Kartik Chandran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7292005/publications.pdf

Version: 2024-02-01

41344 37204 10,556 132 49 96 citations h-index g-index papers 159 159 159 13652 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature, 2011, 477, 340-343.	27.8	1,127
2	Endosomal Proteolysis of the Ebola Virus Glycoprotein Is Necessary for Infection. Science, 2005, 308, 1643-1645.	12.6	744
3	Small molecule inhibitors reveal Niemann–Pick C1 is essential for Ebola virus infection. Nature, 2011, 477, 344-348.	27.8	601
4	Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science, 2020, 369, 731-736.	12.6	534
5	Taxonomy of the order Mononegavirales: update 2016. Archives of Virology, 2016, 161, 2351-2360.	2.1	407
6	Immune responses to SARS-CoV-2 infection in hospitalized pediatric and adult patients. Science Translational Medicine, 2020, 12, .	12.4	298
7	Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO Journal, 2012, 31, 1947-1960.	7.8	284
8	The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nature Microbiology, 2018, 3, 1084-1089.	13.3	283
9	A naturally occurring antiviral ribonucleotide encoded by the human genome. Nature, 2018, 558, 610-614.	27.8	225
10	Taxonomy of the order Mononegavirales: update 2019. Archives of Virology, 2019, 164, 1967-1980.	2.1	224
11	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
12	A Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola Virus. Cell Host and Microbe, 2018, 24, 221-233.e5.	11.0	182
13	A Replication-Competent Vesicular Stomatitis Virus for Studies of SARS-CoV-2 Spike-Mediated Cell Entry and Its Inhibition. Cell Host and Microbe, 2020, 28, 486-496.e6.	11.0	178
14	Taxonomy of the order Mononegavirales: update 2017. Archives of Virology, 2017, 162, 2493-2504.	2.1	173
15	Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell, 2018, 174, 938-952.e13.	28.9	173
16	Structural basis for antibody-mediated neutralization of Lassa virus. Science, 2017, 356, 923-928.	12.6	170
17	IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nature Chemical Biology, 2019, 15, 259-268.	8.0	169
18	Taxonomy of the order Mononegavirales: update 2018. Archives of Virology, 2018, 163, 2283-2294.	2.1	153

#	Article	IF	CITATIONS
19	Antibodies from a Human Survivor Define Sites of Vulnerability for Broad Protection against Ebolaviruses. Cell, 2017, 169, 878-890.e15.	28.9	145
20	A Forward Genetic Strategy Reveals Destabilizing Mutations in the Ebolavirus Glycoprotein That Alter Its Protease Dependence during Cell Entry. Journal of Virology, 2010, 84, 163-175.	3.4	136
21	The Ebola virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic pathway. Virology, 2011, 419, 72-83.	2.4	118
22	Filoviruses Require Endosomal Cysteine Proteases for Entry but Exhibit Distinct Protease Preferences. Journal of Virology, 2012, 86, 3284-3292.	3.4	114
23	A shared structural solution for neutralizing ebolaviruses. Nature Structural and Molecular Biology, 2011, 18, 1424-1427.	8.2	113
24	Filovirus receptor NPC1 contributes to species-specific patterns of ebolavirus susceptibility in bats. ELife, 2015, 4, .	6.0	110
25	Immunization-Elicited Broadly Protective Antibody Reveals Ebolavirus Fusion Loop as a Site of Vulnerability. Cell, 2017, 169, 891-904.e15.	28.9	103
26	A "Trojan horse―bispecific-antibody strategy for broad protection against ebolaviruses. Science, 2016, 354, 350-354.	12.6	101
27	Haploid Genetic Screen Reveals a Profound and Direct Dependence on Cholesterol for Hantavirus Membrane Fusion. MBio, 2015, 6, e00801.	4.1	100
28	Virus nomenclature below the species level: a standardized nomenclature for natural variants of viruses assigned to the family Filoviridae. Archives of Virology, 2013, 158, 301-311.	2.1	99
29	Comprehensive Functional Analysis of N-Linked Glycans on Ebola Virus GP1. MBio, 2014, 5, e00862-13.	4.1	93
30	Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. ELife, 2020, 9, .	6.0	91
31	Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies. MBio, 2016, 7, e02154-15.	4.1	86
32	Discussions and decisions of the 2012–2014 International Committee on Taxonomy of Viruses (ICTV) Filoviridae Study Group, January 2012–June 2013. Archives of Virology, 2014, 159, 821-830.	2.1	85
33	Protocadherin-1 is essential for cell entry by New World hantaviruses. Nature, 2018, 563, 559-563.	27.8	84
34	Development of a Human Antibody Cocktail that Deploys Multiple Functions to Confer Pan-Ebolavirus Protection. Cell Host and Microbe, 2019, 25, 39-48.e5.	11.0	83
35	A Two-Antibody Pan-Ebolavirus Cocktail Confers Broad Therapeutic Protection in Ferrets and Nonhuman Primates. Cell Host and Microbe, 2019, 25, 49-58.e5.	11.0	82
36	Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor-Binding Site. Cell Reports, 2016, 15, 1514-1526.	6.4	80

#	Article	IF	Citations
37	Longitudinal dynamics of the human B cell response to the yellow fever 17D vaccine. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6675-6685.	7.1	80
38	Filovirus entry into cells – new insights. Current Opinion in Virology, 2012, 2, 206-214.	5.4	73
39	Taxonomy of the order Mononegavirales: second update 2018. Archives of Virology, 2019, 164, 1233-1244.	2.1	70
40	Cathepsin-mediated Necrosis Controls the Adaptive Immune Response by Th2 (T helper type 2)-associated Adjuvants. Journal of Biological Chemistry, 2013, 288, 7481-7491.	3.4	66
41	Direct Visualization of Ebola Virus Fusion Triggering in the Endocytic Pathway. MBio, 2016, 7, e01857-15.	4.1	66
42	Niemann-Pick C1 Is Essential for Ebolavirus Replication and Pathogenesis <i>In Vivo</i> . MBio, 2015, 6, e00565-15.	4.1	65
43	Hantavirus entry: Perspectives and recent advances. Advances in Virus Research, 2019, 104, 185-224.	2.1	65
44	Structural Basis for Differential Neutralization of Ebolaviruses. Viruses, 2012, 4, 447-470.	3.3	63
45	Efficacy and Safety of COVID-19 Convalescent Plasma in Hospitalized Patients. JAMA Internal Medicine, 2022, 182, 115.	5.1	63
46	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
47	Inhibition of Ebola Virus Entry by a C-peptide Targeted to Endosomes. Journal of Biological Chemistry, 2011, 286, 15854-15861.	3.4	59
48	Virus nomenclature below the species level: a standardized nomenclature for filovirus strains and variants rescued from cDNA. Archives of Virology, 2014, 159, 1229-37.	2.1	59
49	Conformational changes in the Ebola virus membrane fusion machine induced by pH, Ca2+, and receptor binding. PLoS Biology, 2020, 18, e3000626.	5.6	59
50	Cell entry by a novel European filovirus requires host endosomal cysteine proteases and Niemann–Pick C1. Virology, 2014, 468-470, 637-646.	2.4	55
51	Virus nomenclature below the species level: a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae. Archives of Virology, 2013, 158, 1425-1432.	2.1	54
52	Characterization of the SARS-CoV-2 S Protein: Biophysical, Biochemical, Structural, and Antigenic Analysis. ACS Omega, 2021, 6, 85-102.	3.5	54
53	Complete In Vitro Assembly of the Reovirus Outer Capsid Produces Highly Infectious Particles Suitable for Genetic Studies of the Receptor-Binding Protein. Journal of Virology, 2001, 75, 5335-5342.	3.4	52
54	The Hantavirus Surface Glycoprotein Lattice and Its Fusion Control Mechanism. Cell, 2020, 183, 442-456.e16.	28.9	52

#	Article	IF	CITATIONS
55	Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names. Viruses, 2014, 6, 3663-3682.	3.3	49
56	Novel Small Molecule Entry Inhibitors of Ebola Virus. Journal of Infectious Diseases, 2015, 212, S425-S434.	4.0	49
57	Single dose of a rVSV-based vaccine elicits complete protection against severe fever with thrombocytopenia syndrome virus. Npj Vaccines, 2019, 4, 5.	6.0	45
58	Designed protein mimics of the Ebola virus glycoprotein GP2 αâ€helical bundle: Stability and pH effects. Protein Science, 2011, 20, 1587-1596.	7.6	41
59	A New Transferrin Receptor Aptamer Inhibits New World Hemorrhagic Fever Mammarenavirus Entry. Molecular Therapy - Nucleic Acids, 2016, 5, e321.	5.1	41
60	Functional convalescent plasma antibodies and pre-infusion titers shape the early severe COVID-19 immune response. Nature Communications, 2021, 12, 6853.	12.8	41
61	Protective neutralizing antibodies from human survivors of Crimean-Congo hemorrhagic fever. Cell, 2021, 184, 3486-3501.e21.	28.9	39
62	Crystal Structure of the Marburg Virus GP2 Core Domain in Its Postfusion Conformation. Biochemistry, 2012, 51, 7665-7675.	2.5	37
63	Niemann-Pick C1 (NPC1)/NPC1-like1 Chimeras Define Sequences Critical for NPC1's Function as a Filovirus Entry Receptor. Viruses, 2012, 4, 2471-2484.	3.3	36
64	A Mutation in the Ebola Virus Envelope Glycoprotein Restricts Viral Entry in a Host Species- and Cell-Type-Specific Manner. Journal of Virology, 2013, 87, 3324-3334.	3.4	36
65	Treatment of Severe COVID-19 with Convalescent Plasma in Bronx, NYC. JCI Insight, 2021, 6, .	5.0	36
66	Marburg Virus Glycoprotein GP2: pH-Dependent Stability of the Ectodomain \hat{l}_{\pm} -Helical Bundle. Biochemistry, 2012, 51, 2515-2525.	2.5	35
67	Human monoclonal antibodies against chikungunya virus target multiple distinct epitopes in the E1 and E2 glycoproteins. PLoS Pathogens, 2019, 15, e1008061.	4.7	35
68	A Combination of Receptor-Binding Domain and N-Terminal Domain Neutralizing Antibodies Limits the Generation of SARS-CoV-2 Spike Neutralization-Escape Mutants. MBio, 2021, 12, e0247321.	4.1	35
69	C-peptide inhibitors of Ebola virus glycoprotein-mediated cell entry: Effects of conjugation to cholesterol and side chain–side chain crosslinking. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5356-5360.	2.2	33
70	Cysteine Cathepsin Inhibitors as Anti-Ebola Agents. ACS Infectious Diseases, 2016, 2, 173-179.	3.8	33
71	Induction of SARS-CoV-2 neutralizing antibodies by CoronaVac and BNT162b2 vaccines in na \tilde{A} -ve and previously infected individuals. EBioMedicine, 2022, 78, 103972.	6.1	31
72	Structural basis of broad ebolavirus neutralization by a human survivor antibody. Nature Structural and Molecular Biology, 2019, 26, 204-212.	8.2	30

#	Article	IF	Citations
73	The shape of pleomorphic virions determines resistance to cell-entry pressure. Nature Microbiology, 2021, 6, 617-629.	13.3	29
74	A Proteolytic Cascade Controls Lysosome Rupture and Necrotic Cell Death Mediated by Lysosome-Destabilizing Adjuvants. PLoS ONE, 2014, 9, e95032.	2.5	29
75	Generation and characterization of protective antibodies to Marburg virus. MAbs, 2017, 9, 696-703.	5.2	28
76	Structure and Characterization of Crimean-Congo Hemorrhagic Fever Virus GP38. Journal of Virology, 2020, 94, .	3.4	28
77	Bispecific Antibody Affords Complete Post-Exposure Protection of Mice from Both Ebola (Zaire) and Sudan Viruses. Scientific Reports, 2016, 6, 19193.	3.3	27
78	Site-Specific Photo-Crosslinking Proteomics Reveal Regulation of IFITM3 Trafficking and Turnover by VCP/p97 ATPase. Cell Chemical Biology, 2020, 27, 571-585.e6.	5.2	27
79	Two Synthetic Antibodies that Recognize and Neutralize Distinct Proteolytic Forms of the Ebola Virus Envelope Glycoprotein. ChemBioChem, 2012, 13, 2549-2557.	2.6	26
80	Two Point Mutations in Old World Hantavirus Glycoproteins Afford the Generation of Highly Infectious Recombinant Vesicular Stomatitis Virus Vectors. MBio, 2019, 10, .	4.1	26
81	Structural Characterization of the Glycoprotein GP2 Core Domain from the CAS Virus, a Novel Arenavirus-Like Species. Journal of Molecular Biology, 2014, 426, 1452-1468.	4.2	25
82	A Single Residue in Ebola Virus Receptor NPC1 Influences Cellular Host Range in Reptiles. MSphere, 2016, 1, .	2.9	25
83	Synthetic Antibodies with a Human Framework That Protect Mice from Lethal Sudan Ebolavirus Challenge. ACS Chemical Biology, 2014, 9, 2263-2273.	3.4	23
84	Development of an antibody cocktail for treatment of Sudan virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3768-3778.	7.1	23
85	VSV-Displayed HIV-1 Envelope Identifies Broadly Neutralizing Antibodies Class-Switched to IgG and IgA. Cell Host and Microbe, 2020, 27, 963-975.e5.	11.0	23
86	Implementation of Objective PASC-Derived Taxon Demarcation Criteria for Official Classification of Filoviruses. Viruses, 2017, 9, 106.	3.3	22
87	Vesicular Stomatitis Virus-Based Vaccines Provide Cross-Protection against Andes and Sin Nombre Viruses. Viruses, 2019, 11, 645.	3.3	18
88	Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials. Systematic Biology, 2016, 66, syw096.	5.6	17
89	Real-Time Analysis of Individual Ebola Virus Glycoproteins Reveals Pre-Fusion, Entry-Relevant Conformational Dynamics. Viruses, 2020, 12, 103.	3.3	16
90	Human antibody recognizing a quaternary epitope in the Puumala virus glycoprotein provides broad protection against orthohantaviruses. Science Translational Medicine, 2022, 14, eabl5399.	12.4	16

#	Article	IF	Citations
91	Endocytic Pathways Involved in Filovirus Entry: Advances, Implications and Future Directions. Viruses, 2012, 4, 3647-3664.	3.3	15
92	Structural basis of synergistic neutralization of Crimean-Congo hemorrhagic fever virus by human antibodies. Science, 2022, 375, 104-109.	12.6	15
93	Tracing Transmission of Sin Nombre Virus and Discovery of Infection in Multiple Rodent Species. Journal of Virology, 2021, 95, e0153421.	3.4	14
94	Genetic depletion studies inform receptor usage by virulent hantaviruses in human endothelial cells. ELife, 2021, 10, .	6.0	13
95	HVEM signaling promotes protective antibody-dependent cellular cytotoxicity (ADCC) vaccine responses to herpes simplex viruses. Science Immunology, 2020, 5, .	11.9	12
96	Near-germline human monoclonal antibodies neutralize and protect against multiple arthritogenic alphaviruses. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
97	A Hyperstabilizing Mutation in the Base of the Ebola Virus Glycoprotein Acts at Multiple Steps To Abrogate Viral Entry. MBio, 2019, 10, .	4.1	11
98	Single-Dilution COVID-19 Antibody Test with Qualitative and Quantitative Readouts. MSphere, 2021, 6, .	2.9	11
99	Genotype-specific features reduce the susceptibility of South American yellow fever virus strains to vaccine-induced antibodies. Cell Host and Microbe, 2022, 30, 248-259.e6.	11.0	11
100	Reovirus infection is regulated by NPC1 and endosomal cholesterol homeostasis. PLoS Pathogens, 2022, 18, e1010322.	4.7	11
101	Longitudinally monitored immune biomarkers predict the timing of COVID-19 outcomes. PLoS Computational Biology, 2022, 18, e1009778.	3.2	10
102	A Glycoprotein Mutation That Emerged during the 2013–2016 Ebola Virus Epidemic Alters Proteolysis and Accelerates Membrane Fusion. MBio, 2021, 12, .	4.1	9
103	Conformational Properties of Peptides Corresponding to the Ebolavirus GP2 Membrane-Proximal External Region in the Presence of Micelle-Forming Surfactants and Lipids. Biochemistry, 2013, 52, 3393-3404.	2.5	8
104	Human, Nonhuman Primate, and Bat Cells Are Broadly Susceptible to Tibrovirus Particle Cell Entry. Frontiers in Microbiology, 2019, 10, 856.	3.5	8
105	Meeting report: Eleventh International Conference on Hantaviruses. Antiviral Research, 2020, 176, 104733.	4.1	8
106	Design and evaluation of bi- and trispecific antibodies targeting multiple filovirus glycoproteins. Journal of Biological Chemistry, 2018, 293, 6201-6211.	3.4	7
107	Oral Vaccination With Recombinant Vesicular Stomatitis Virus Expressing Sin Nombre Virus Glycoprotein Prevents Sin Nombre Virus Transmission in Deer Mice. Frontiers in Cellular and Infection Microbiology, 2020, 10, 333.	3.9	7
108	A Virion-Based Assay for Glycoprotein Thermostability Reveals Key Determinants of Filovirus Entry and Its Inhibition. Journal of Virology, 2020, 94, .	3.4	7

7

#	Article	IF	CITATIONS
109	Generation of plasma cells and CD27 ^{â^'} lgD ^{â^'} B cells during hantavirus infection is associated with distinct pathological findings. Clinical and Translational Immunology, 2021, 10, e1313.	3.8	7
110	MAVERICC: Marker-free Vaccinia Virus Engineering of Recombinants through in vitro CRISPR/Cas9 Cleavage. Journal of Molecular Biology, 2021, 433, 166896.	4.2	7
111	Direct Intracellular Visualization of Ebola Virus-Receptor Interaction by <i>In Situ</i> Proximity Ligation. MBio, 2021, 12, .	4.1	6
112	Prominent Neutralizing Antibody Response Targeting the Ebolavirus Glycoprotein Subunit Interface Elicited by Immunization. Journal of Virology, 2021, 95, .	3.4	6
113	A Powassan virus domain III nanoparticle immunogen elicits neutralizing and protective antibodies in mice. PLoS Pathogens, 2022, 18, e1010573.	4.7	6
114	Two Distinct Lysosomal Targeting Strategies Afford Trojan Horse Antibodies With Pan-Filovirus Activity. Frontiers in Immunology, 2021, 12, 729851.	4.8	5
115	FILOVIRUS ENTRY INTO SUSCEPTIBLE CELLS. , 2015, , 487-514.		4
116	How to turn competitors into collaborators. Nature, 2017, 541, 283-285.	27.8	3
117	Ebola virus, but not Marburg virus, replicates efficiently and without required adaptation in snake cells. Virus Evolution, 2018, 4, vey034.	4.9	3
118	Exploiting Pre-Existing CD4+ T Cell Help from Bacille Calmette–Guérin Vaccination to Improve Antiviral Antibody Responses. Journal of Immunology, 2020, 205, 425-437.	0.8	3
119	Mechanistic and Fc requirements for inhibition of Sudan virus entry and in vivo protection by a synthetic antibody. Immunology Letters, 2017, 190, 289-295.	2.5	2
120	Approaching the Interpretation of Discordances in SARS-CoV-2 Testing. Open Forum Infectious Diseases, 2021, 8, ofab144.	0.9	2
121	Structural basis of synergistic neutralization of Crimean-Congo hemorrhagic fever virus by human antibodies. Science, 2021, , eabl6502.	12.6	2
122	Candidate medical countermeasures targeting Ebola virus cell entry. Future Virology, 2017, 12, 119-140.	1.8	1
123	Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Qualitative Immunoglobulin G Assays: The Value of Numeric Reporting. Archives of Pathology and Laboratory Medicine, 2021, 145, 929-936.	2.5	1
124	Neutralizing Antibodies against Crimean–Congo Hemorrhagic Fever Virus Derived from a Human Survivor. Proceedings (mdpi), 2020, 50, .	0.2	0
125	Mapping the Interface between New World Hantaviruses and Their Receptor, PCDH1. Proceedings (mdpi), 2020, 50, .	0.2	0
126	Structural Basis of Neutralization by Human Antibodies Targeting Crimean-Congo Hemorrhagic Fever Virus Glycoprotein Gc. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
127	Title is missing!. , 2020, 18, e3000626.		O
128	Title is missing!. , 2020, 18, e3000626.		O
129	Title is missing!. , 2020, 18, e3000626.		O
130	Title is missing!. , 2020, 18, e3000626.		0
131	Title is missing!. , 2020, 18, e3000626.		O
132	Title is missing!. , 2020, 18, e3000626.		0