
Wayne I L Davies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7291748/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced short-wavelength sensitivity in the blue-tongued skink <i>Tiliqua rugosa</i> . Journal of Experimental Biology, 2022, 225, .	1.7	1
2	Visual opsin expression and morphological characterization of retinal photoreceptors in the pouched lamprey (<scp><i>Geotria australis</i></scp> , Gray). Journal of Comparative Neurology, 2021, 529, 2265-2282.	1.6	4
3	Chimeric human opsins as optogenetic light sensitisers. Journal of Experimental Biology, 2021, 224, .	1.7	14
4	Chick fetal organ spheroids as a model to study development and disease. BMC Molecular and Cell Biology, 2021, 22, 37.	2.0	1
5	Distinct Opsin 3 (<i>Opn3</i>) Expression in the Developing Nervous System during Mammalian Embryogenesis. ENeuro, 2021, 8, ENEURO.0141-21.2021.	1.9	9
6	Visual Opsin Diversity in Sharks and Rays. Molecular Biology and Evolution, 2020, 37, 811-827.	8.9	20
7	Elucidation of Cellular Mechanisms That Regulate the Sustained Contraction and Relaxation of the Mammalian Iris. , 2020, 61, 5.		10
8	Editorial: Biodiversity of Sensory Systems in Aquatic Vertebrates. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	2
9	Short-wavelength-sensitive 2 (Sws2) visual photopigment models combined with atomistic molecular simulations to predict spectral peaks of absorbance. PLoS Computational Biology, 2020, 16, e1008212.	3.2	3
10	Vision using multiple distinct rod opsins in deep-sea fishes. Science, 2019, 364, 588-592.	12.6	151
11	Differential stability of variant gene transcripts in myopic patients. Molecular Vision, 2019, 25, 183-193.	1.1	2
12	Leber Congenital Amaurosis Associated with Mutations in CEP290, Clinical Phenotype, and Natural History in Preparation for Trials of Novel Therapies. Ophthalmology, 2018, 125, 894-903.	5.2	58
13	Sensory System Responses to Human-Induced Environmental Change. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	24
14	Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides. Science Advances, 2017, 3, eaao4709.	10.3	55
15	The Genetic and Evolutionary Drives behind Primate Color Vision. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	48
16	The Biological Mechanisms and Behavioral Functions of Opsin-Based Light Detection by the Skin. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	21
17	Visual pigments in a palaeognath bird, the emu <i>Dromaius novaehollandiae</i> : implications for spectral sensitivity and the origin of ultraviolet vision. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161063.	2.6	17
18	Evolution of Vertebrate Phototransduction: Cascade Activation. Molecular Biology and Evolution, 2016, 33, 2064-2087.	8.9	44

WAYNE I L DAVIES

#	Article	IF	CITATIONS
19	CNTF Gene Therapy Confers Lifelong Neuroprotection in a Mouse Model of Human Retinitis Pigmentosa. Molecular Therapy, 2015, 23, 1308-1319.	8.2	66
20	Spectral Tuning in the Eyes of Deep-Sea Lanternfishes (Myctophidae): A Novel Sexually Dimorphic Intra-Ocular Filter. Brain, Behavior and Evolution, 2015, 85, 77-93.	1.7	17
21	<i>De novo</i> point mutations in patients diagnosed with ataxic cerebral palsy. Brain, 2015, 138, 1817-1832.	7.6	129
22	An extended family of novel vertebrate photopigments is widely expressed and displays a diversity of function. Genome Research, 2015, 25, 1666-1679.	5.5	121
23	The hypothalamic photoreceptors regulating seasonal reproduction in birds: A prime role for VA opsin. Frontiers in Neuroendocrinology, 2015, 37, 13-28.	5.2	65
24	Challenges using diagnostic next-generation sequencing in the clinical environment for inherited retinal disorders. Personalized Medicine, 2014, 11, 99-111.	1.5	7
25	The Evolution of Non-visual Photopigments in the Central Nervous System of Vertebrates. , 2014, , 65-103.		14
26	The Evolution and Function of Melanopsin in Craniates. , 2014, , 23-63.		7
27	How parrots see their colours: novelty in the visual pigments of <i>Platycercus elegans</i> . Journal of Experimental Biology, 2013, 216, 4454-4461.	1.7	22
28	The nocturnal bottleneck and the evolution of activity patterns in mammals. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130508.	2.6	183
29	Next-generation sequencing (NGS) as a diagnostic tool for retinal degeneration reveals a much higher detection rate in early-onset disease. European Journal of Human Genetics, 2013, 21, 274-280.	2.8	119
30	X-linked cone dystrophy and colour vision deficiency arising from a missense mutation in a hybrid L/M cone opsin gene. Vision Research, 2013, 80, 41-50.	1.4	22
31	Cone Photoreceptor Neuroprotection Conferred by CNTF in a Novel In Vivo Model of Battlefield Retinal Laser Injury. , 2013, 54, 5456.		9
32	Variations in Opsin Coding Sequences Cause X-Linked Cone Dysfunction Syndrome with Myopia and Dichromacy. , 2013, 54, 1361.		50
33	Vertebrate ancient opsin photopigment spectra and the avian photoperiodic response. Biology Letters, 2012, 8, 291-294.	2.3	73
34	Cone monochromacy and visual pigment spectral tuning in wobbegong sharks. Biology Letters, 2012, 8, 1019-1022.	2.3	23
35	Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 387-393.	2.6	48
36	Focus on Molecules: Melanopsin. Experimental Eye Research, 2012, 97, 161-162.	2.6	13

#	Article	IF	CITATIONS
37	Next-generation sequencing in health-care delivery: lessons from the functional analysis of rhodopsin. Genetics in Medicine, 2012, 14, 891-899.	2.4	28

Evolution and Functional Characterisation of Melanopsins in a Deep-Sea Chimaera (Elephant Shark,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

39	Anion sensitivity and spectral tuning of middle- and long-wavelength-sensitive (MWS/LWS) visual pigments. Cellular and Molecular Life Sciences, 2012, 69, 2455-2464.	5.4	20
40	Molecular ecology and adaptation of visual photopigments in craniates. Molecular Ecology, 2012, 21, 3121-3158.	3.9	169
41	Focus on Molecules: Centrosomal protein 290 (CEP290). Experimental Eye Research, 2011, 92, 316-317.	2.6	15
42	Functional diversity of melanopsins and their global expression in the teleost retina. Cellular and Molecular Life Sciences, 2011, 68, 4115-4132.	5.4	101
43	Characterization of a Dominant Cone Degeneration in a Green Fluorescent Protein–Reporter Mouse with Disruption of Loci Associated with Human Dominant Retinal Dystrophy. , 2011, 52, 6617.		13
44	ldentification and characterization of visual pigments in caecilians (Amphibia: Gymnophiona), an order of limbless vertebrates with rudimentary eyes. Journal of Experimental Biology, 2010, 213, 3586-3592.	1.7	58
45	Vertebrate ancient opsin and melanopsin: divergent irradiance detectors. Photochemical and Photobiological Sciences, 2010, 9, 1444-1457.	2.9	77
46	Into the blue: Gene duplication and loss underlie color vision adaptations in a deep-sea chimaera, the elephant shark <i>Callorhinchus milii</i> . Genome Research, 2009, 19, 415-426.	5.5	62
47	Adaptive Gene Loss Reflects Differences in the Visual Ecology of Basal Vertebrates. Molecular Biology and Evolution, 2009, 26, 1803-1809.	8.9	50
48	Shedding Light on Serpent Sight: The Visual Pigments of Henophidian Snakes. Journal of Neuroscience, 2009, 29, 7519-7525.	3.6	67
49	VA Opsin-Based Photoreceptors in the Hypothalamus of Birds. Current Biology, 2009, 19, 1396-1402.	3.9	149
50	Developmental dynamics of cone photoreceptors in the eel. BMC Developmental Biology, 2009, 9, 71.	2.1	21
51	Evolution and spectral tuning of visual pigments in birds and mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2941-2955.	4.0	182
52	The evolution of early vertebrate photoreceptors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2925-2940.	4.0	89
53	The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, <i>Acanthopagrus butcheri</i> . Journal of Experimental Biology, 2008, 211, 1495-1503.	1.7	133
54	Cone visual pigments in two marsupial species: the fat-tailed dunnart (<i>Sminthopsis) Tj ETQq0 0 0 rgBT /Overl</i>	ock 10 Tf 2.6	50 67 Td (ci 43

B: Biological Sciences, 2008, 275, 1491-1499.

WAYNE I L DAVIES

#	Article	IF	CITATIONS
55	Functional characterization, tuning, and regulation of visual pigment gene expression in an an an an an an an	0.5	74
56	SPLICE: A technique for generating in vitro spliced coding sequences from genomic DNA. BioTechniques, 2007, 43, 785-789.	1.8	17
57	Visual pigments in a living fossil, the Australian lungfish Neoceratodus forsteri. BMC Evolutionary Biology, 2007, 7, 200.	3.2	23
58	Visual pigments of the platypus: A novel route to mammalian colour vision. Current Biology, 2007, 17, R161-R163.	3.9	93
59	Spectral Tuning of Shortwave-sensitive Visual Pigments in Vertebratesâ€. Photochemistry and Photobiology, 2007, 83, 303-310.	2.5	92
60	In silico patent searching reveals a new cannabinoid receptor. Trends in Pharmacological Sciences, 2006, 27, 1-4.	8.7	302
61	Cardiac Expression of the Cystic Fibrosis Transmembrane Conductance Regulator Involves Novel Exon 1 Usage to Produce a Unique Amino-terminal Protein. Journal of Biological Chemistry, 2004, 279, 15877-15887.	3.4	21
62	Post-transcriptional regulation of the cystic fibrosis gene in cardiac development and hypertrophy. Biochemical and Biophysical Research Communications, 2004, 319, 410-418.	2.1	18
63	Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Current Biology, 2003, 13, R864-R865.	3.9	141