Kyunglim Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/729121/publications.pdf

Version: 2024-02-01

	394421	454955
1,107	19	30
citations	h-index	g-index
60	60	1042
		citing authors
		3
		1,107 19 citations h-index 60 60

#	Article	IF	CITATIONS
1	Dimeric translationally controlled tumor protein–binding peptide 2 attenuates imiquimod-induced psoriatic inflammation through induction of regulatory T cells. Biomedicine and Pharmacotherapy, 2022, 152, 113245.	5.6	4
2	PEGylation improves the therapeutic potential of dimerized translationally controlled tumor protein blocking peptide in ovalbumin-induced mouse model of airway inflammation. Drug Delivery, 2022, 29, 2320-2329.	5.7	4
3	Overexpression of translationally controlled tumor protein ameliorates metabolic imbalance and increases energy expenditure in mice. International Journal of Obesity, 2021, 45, 1576-1587.	3.4	6
4	Blockade of translationally controlled tumor protein attenuated the aggressiveness of fibroblast-like synoviocytes and ameliorated collagen-induced arthritis. Experimental and Molecular Medicine, 2021, 53, 67-80.	7.7	11
5	Allergic Inflammation Caused by Dimerized Translationally Controlled Tumor Protein is Attenuated by Cardamonin. Frontiers in Pharmacology, 2021, 12, 765521.	3.5	4
6	Dimerized Translationally Controlled Tumor Protein-Binding Peptide 2 Attenuates Systemic Anaphylactic Reactions Through Direct Suppression of Mast Cell Degranulation. Frontiers in Pharmacology, 2021, 12, 764321.	3.5	4
7	dTBP2 attenuates severe airway inflammation by blocking inflammatory cellular network mediated by dTCTP. Biomedicine and Pharmacotherapy, 2021, 144, 112316.	5.6	3
8	Flexible loop and helix 2 domains of TCTP are the functional domains of dimerized TCTP. Scientific Reports, 2020, 10, 197.	3.3	11
9	Regulation of Autophagy Is a Novel Tumorigenesis-Related Activity of Multifunctional Translationally Controlled Tumor Protein. Cells, 2020, 9, 257.	4.1	13
10	Optimization of formulation for enhanced intranasal delivery of insulin with translationally controlled tumor protein-derived protein transduction domain. Drug Delivery, 2019, 26, 622-628.	5.7	9
11	Radiosensitivity of Cancer Cells Is Regulated by Translationally Controlled Tumor Protein. Cancers, 2019, 11, 386.	3.7	15
12	Dimerized, Not Monomeric, Translationally Controlled Tumor Protein Induces Basophil Activation and Mast Cell Degranulation in Chronic Urticaria. Immune Network, 2019, 19, e20.	3.6	12
13	Enhanced intranasal insulin delivery by formulations and tumor protein-derived protein transduction domain as an absorption enhancer. Journal of Controlled Release, 2019, 294, 226-236.	9.9	16
14	Dehydrocostus lactone, a sesquiterpene from Saussurea lappa Clarke, suppresses allergic airway inflammation by binding to dimerized translationally controlled tumor protein. Phytomedicine, 2018, 43, 46-54.	5.3	28
15	Dimerized translationally controlled tumor protein increases interleukin-8 expression through MAPK and NF-ΰB pathways in a human bronchial epithelial cell line. Cell and Bioscience, 2018, 8, 13.	4.8	12
16	Modification of translationally controlled tumor protein-derived protein transduction domain for improved intranasal delivery of insulin. Drug Delivery, 2018, 25, 1025-1032.	5.7	14
17	Modified translationally controlled tumor protein-derived protein transduction domain enhances nasal delivery of exendin-4 as shown with insulin. Drug Delivery, 2018, 25, 1579-1584.	5 . 7	11
18	Some Biological Consequences of the Inhibition of Na,K-ATPase by Translationally Controlled Tumor Protein (TCTP). International Journal of Molecular Sciences, 2018, 19, 1657.	4.1	14

#	Article	IF	CITATIONS
19	TPT1 (tumor protein, translationally-controlled 1) negatively regulates autophagy through the BECN1 interactome and an MTORC1-mediated pathway. Autophagy, 2017, 13, 820-833.	9.1	32
20	Dimerized Translationally Controlled Tumor Protein-Binding Peptide Ameliorates Atopic Dermatitis in NC/Nga Mice. International Journal of Molecular Sciences, 2017, 18, 256.	4.1	14
21	Immunohistochemical Localization of Translationally Controlled Tumor Protein in Axon Terminals of Mouse Hippocampal Neurons. Experimental Neurobiology, 2017, 26, 82-89.	1.6	5
22	Potential of Translationally Controlled Tumor Protein-Derived Protein Transduction Domains as Antigen Carriers for Nasal Vaccine Delivery. Molecular Pharmaceutics, 2016, 13, 3196-3205.	4.6	10
23	Inactivation of Src-to-Ezrin Pathway: A Possible Mechanism in the Ouabain-Mediated Inhibition of A549 Cell Migration. BioMed Research International, 2015, 2015, 1-10.	1.9	16
24	Translationally Controlled Tumor Protein induces epithelial to mesenchymal transition and promotes cell migration, invasion and metastasis. Scientific Reports, 2015, 5, 8061.	3.3	49
25	Insulin Induces Phosphorylation of Serine Residues of Translationally Controlled Tumor Protein in 293T Cells. International Journal of Molecular Sciences, 2015, 16, 7565-7576.	4.1	3
26	Cellular Uptake Mechanism of TCTP-PTD in Human Lung Carcinoma Cells. Molecular Pharmaceutics, 2015, 12, 194-203.	4.6	8
27	Up-Regulation of Rhoa/Rho Kinase Pathway by Translationally Controlled Tumor Protein in Vascular Smooth Muscle Cells. International Journal of Molecular Sciences, 2014, 15, 10365-10376.	4.1	6
28	Osteoclastogenic activity of translationallyâ€controlled tumor protein (TCTP) with reciprocal repression of p21. FEBS Letters, 2014, 588, 4026-4031.	2.8	3
29	Interaction of translationally controlled tumor protein with Apaf-1 is involved in the development of chemoresistance in HeLa cells. BMC Cancer, 2014, 14, 165.	2.6	24
30	Transduction of translationally controlled tumor protein employing TCTP-derived protein transduction domain. Analytical Biochemistry, 2013, 435, 47-53.	2.4	7
31	On employing a translationally controlled tumor protein-derived protein transduction domain analog for transmucosal delivery of drugs. Journal of Controlled Release, 2013, 170, 358-364.	9.9	22
32	Immunohistochemical localization of translationally controlled tumor protein in the mouse digestive system. Journal of Anatomy, 2013, 223, 278-288.	1.5	6
33	Dimerization of TCTP and its clinical implications for allergy. Biochimie, 2013, 95, 659-666.	2.6	21
34	Hypertension resulting from overexpression of translationally controlled tumor protein increases the severity of atherosclerosis in apolipoprotein E knock-out mice. Transgenic Research, 2012, 21, 1245-1254.	2.4	9
35	Expression and localization of translationally controlled tumor protein in rat urinary organs. Microscopy Research and Technique, 2012, 75, 1576-1581.	2.2	7
36	Neuroprotective effect of Cu,Zn-superoxide dismutase fused to a TCTP-derived protein transduction domain. European Journal of Pharmacology, 2011, 666, 87-92.	3.5	7

#	Article	IF	CITATIONS
37	Design and evaluation of variants of the protein transduction domain originated from translationally controlled tumor protein. European Journal of Pharmaceutical Sciences, 2011, 43, 25-31.	4.0	11
38	A peptide binding to dimerized translationally controlled tumor protein modulates allergic reactions. Journal of Molecular Medicine, 2011, 89, 603-610.	3.9	19
39	A protein transduction domain located at the NH2-terminus of human translationally controlled tumor protein for delivery of active molecules to cells. Biomaterials, 2011, 32, 222-230.	11.4	30
40	The cell penetrating ability of the proapoptotic peptide, KLAKLAKKLAK fused to the N-terminal protein transduction domain of translationally controlled tumor protein, MIIYRDLISH. Biomaterials, 2011, 32, 5262-5268.	11.4	56
41	Over-expression of translationally controlled tumor protein in lens epithelial cells seems to be associated with cataract development. Transgenic Research, 2009, 18, 953-960.	2.4	7
42	Roles of ERK, PI3 kinase, and PLC- $\hat{1}^3$ pathways induced by overexpression of translationally controlled tumor protein in HeLa cells. Archives of Biochemistry and Biophysics, 2009, 485, 82-87.	3.0	24
43	Proton Pump Inhibitors Exert Anti-Allergic Effects by Reducing TCTP Secretion. PLoS ONE, 2009, 4, e5732.	2.5	11
44	Dimerization of Translationally Controlled Tumor Protein Is Essential For Its Cytokine-Like Activity. PLoS ONE, 2009, 4, e6464.	2.5	57
45	Identification of differentially expressed proteins in the heart of translationally controlled tumor protein overâ€expressing transgenic mice. Biomedical Chromatography, 2008, 22, 1091-1099.	1.7	4
46	Transgenic overexpression of translationally controlled tumor protein induces systemic hypertension via repression of Na+,K+-ATPase. Journal of Molecular and Cellular Cardiology, 2008, 44, 151-159.	1.9	45
47	Inhibition of Na,K-ATPase-suppressive activity of translationally controlled tumor protein by sorting nexin 6. FEBS Letters, 2006, 580, 3558-3564.	2.8	17
48	Extracellular potassium deprivation reversibly dephosphorylates cofilin. Biochemical and Biophysical Research Communications, 2006, 345, 1393-1397.	2.1	3
49	Molecular mechanism of cofilin dephosphorylation by ouabain. Cellular Signalling, 2006, 18, 2033-2040.	3.6	16
50	Translationally Controlled Tumor Protein Interacts with the Third Cytoplasmic Domain of Na,K-ATPase 1± Subunit and Inhibits the Pump Activity in HeLa Cells. Journal of Biological Chemistry, 2004, 279, 49868-49875.	3.4	80
51	Interaction of Cofilin with Triose-phosphate Isomerase Contributes Glycolytic Fuel for Na,K-ATPase via Rho-mediated Signaling Pathway. Journal of Biological Chemistry, 2002, 277, 48931-48937.	3.4	45
52	Identification of the cofilin-binding sites in the large cytoplasmic domain of Na,K-ATPase. Biochimie, 2002, 84, 1021-1029.	2.6	8
53	Interaction of the α subunit of Na,K-ATPase with cofilin. Biochemical Journal, 2001, 353, 377.	3.7	30
54	Interaction of the α subunit of Na,K-ATPase with cofilin. Biochemical Journal, 2001, 353, 377-385.	3.7	46

#	ARTICLE	IF	CITATION
55	Identification of the calcium binding sites in translationally controlled tumor protein. Archives of Pharmacal Research, 2000, 23, 633-636.	6.3	84
56	Identification of the Self-Interaction of Rat TCTP/IgE-Dependent Histamine-Releasing Factor Using Yeast Two-Hybrid System. Archives of Biochemistry and Biophysics, 2000, 384, 379-382.	3.0	44
57	Effects of mutation at a conservedN-glycosylation site in the bovine retinal cyclic nucleotide-gated ion channel. FEBS Letters, 2000, 478, 246-252.	2.8	23
58	Possible implication for an indirect interaction between basic fibroblast growth factor and (Na,K)ATPase. Archives of Pharmacal Research, 1998, 21, 707-711.	6.3	5
59	Nucleotide and deduced amino acid sequences of rat myosin binding protein H (MyBP-H). Archives of Pharmacal Research, 1998, 21, 712-717.	6.3	2
60	Cloning and nucleotide sequence of a cDNA encoding the rat triosephosphate isomerase. Archives of Pharmacal Research, 1996, 19, 497-501.	6.3	0