
Paulin Coulibaly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7289676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. Journal of Hydrology, 2005, 307, 145-163.	5.4	413
2	Artificial neural network modeling of water table depth fluctuations. Water Resources Research, 2001, 37, 885-896.	4.2	321
3	Developments in hydrometric network design: A review. Reviews of Geophysics, 2009, 47, .	23.0	254
4	Two decades of anarchy? Emerging themes and outstanding challenges for neural network river for example, progress in Physical Geography, 2012, 36, 480-513.	3.2	235
5	Application of Support Vector Machine in Lake Water Level Prediction. Journal of Hydrologic Engineering - ASCE, 2006, 11, 199-205.	1.9	215
6	Nonstationary hydrological time series forecasting using nonlinear dynamic methods. Journal of Hydrology, 2005, 307, 164-174.	5.4	212
7	Wavelet analysis of variability in annual Canadian streamflows. Water Resources Research, 2004, 40, .	4.2	189
8	Estimation of Continuous Streamflow in Ontario Ungauged Basins: Comparison of Regionalization Methods. Journal of Hydrologic Engineering - ASCE, 2011, 16, 447-459.	1.9	175
9	Multivariate Reservoir Inflow Forecasting Using Temporal Neural Networks. Journal of Hydrologic Engineering - ASCE, 2001, 6, 367-376.	1.9	163
10	Downscaling Precipitation and Temperature with Temporal Neural Networks. Journal of Hydrometeorology, 2005, 6, 483-496.	1.9	144
11	Temporal neural networks for downscaling climate variability and extremes. Neural Networks, 2006, 19, 135-144.	5.9	137
12	Bayesian neural network for rainfall-runoff modeling. Water Resources Research, 2006, 42, .	4.2	119
13	Bayesian flood forecasting methods: A review. Journal of Hydrology, 2017, 551, 340-351.	5.4	86
14	A recurrent neural networks approach using indices of low-frequency climatic variability to forecast regional annual runoff. Hydrological Processes, 2000, 14, 2755-2777.	2.6	85
15	Does nonstationarity in rainfall require nonstationary intensity–duration–frequency curves?. Hydrology and Earth System Sciences, 2017, 21, 6461-6483.	4.9	79
16	Spatial and temporal variability of Canadian seasonal precipitation (1900–2000). Advances in Water Resources, 2006, 29, 1846-1865.	3.8	72
17	Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection. Hydrological Processes, 2001, 15, 1533-1536.	2.6	69
18	Uncertainty analysis of statistical downscaling methods using Canadian Global Climate Model predictors. Hydrological Processes, 2006, 20, 3085-3104.	2.6	62

#	Article	IF	CITATIONS
19	Reservoir Computing approach to Great Lakes water level forecasting. Journal of Hydrology, 2010, 381, 76-88.	5.4	62
20	Assessing model state and forecasts variation in hydrologic data assimilation. Journal of Hydrology, 2014, 513, 127-141.	5.4	62
21	Recent Advances in Real-Time Pluvial Flash Flood Forecasting. Water (Switzerland), 2020, 12, 570.	2.7	59
22	Downscaling daily extreme temperatures with genetic programming. Geophysical Research Letters, 2004, 31, .	4.0	57
23	Rootâ€zone soil moisture estimation using dataâ€driven methods. Water Resources Research, 2014, 50, 2946-2962.	4.2	57
24	Spatial and Temporal Variability of Canadian Seasonal Streamflows. Journal of Climate, 2005, 18, 191-210.	3.2	55
25	Improving groundwater level forecasting with a feedforward neural network and linearly regressed projected precipitation. Journal of Hydroinformatics, 2008, 10, 317-330.	2.4	52
26	Validation of hydrological models for climate scenario simulation: the case of Saguenay watershed in Quebec. Hydrological Processes, 2007, 21, 3123-3135.	2.6	47
27	Entropy Applications to Water Monitoring Network Design: A Review. Entropy, 2017, 19, 613.	2.2	46
28	An evaluation of regionalization and watershed classification schemes for continuous daily streamflow prediction in ungauged watersheds. Canadian Water Resources Journal, 2017, 42, 2-20.	1.2	45
29	Identification of rainfall–runoff model for improved baseflow estimation in ungauged basins. Hydrological Processes, 2012, 26, 356-366.	2.6	43
30	ldentification of hydrological models for operational flood forecasting in St. John's, Newfoundland, Canada. Journal of Hydrology: Regional Studies, 2020, 27, 100646.	2.4	42
31	CRDEMO: Combined regionalization and dual entropy-multiobjective optimization for hydrometric network design. Water Resources Research, 2013, 49, 8070-8089.	4.2	37
32	Synthesis review on groundwater discharge to surface water in the Great Lakes Basin. Journal of Great Lakes Research, 2014, 40, 247-256.	1.9	35
33	Improving streamflow estimation in ungauged basins using a multi-modelling approach. Hydrological Sciences Journal, 2016, 61, 2668-2679.	2.6	35
34	Information theoryâ€based decision support system for integrated design of multivariable hydrometric networks. Water Resources Research, 2017, 53, 6239-6259.	4.2	34
35	Distributed modelling of future changes in hydrological processes of Spencer Creek watershed. Hydrological Processes, 2011, 25, 1254-1270.	2.6	33
36	Hydrometric network design using streamflow signatures and indicators of hydrologic alteration. Journal of Hydrology, 2015, 529, 1350-1359.	5.4	33

#	Article	IF	CITATIONS
37	Evaluation of Canadian National Hydrometric Network density based on WMO 2008 standards. Canadian Water Resources Journal, 2013, 38, 159-167.	1.2	32
38	Inter-comparison of lumped hydrological models in data-scarce watersheds using different precipitation forcing data sets: Case study of Northern Ontario, Canada. Journal of Hydrology: Regional Studies, 2020, 31, 100730.	2.4	32
39	Evaluation of ensemble precipitation forecasts generated through post-processing in a Canadian catchment. Hydrology and Earth System Sciences, 2018, 22, 1957-1969.	4.9	30
40	Seasonal reservoir inflow forecasting with low-frequency climatic indices: a comparison of data-driven methods. Hydrological Sciences Journal, 2007, 52, 508-522.	2.6	29
41	Variability in Canadian Seasonal Streamflow Information and Its Implication for Hydrometric Network Design. Journal of Hydrologic Engineering - ASCE, 2014, 19, .	1.9	29
42	Multi-Model Approaches for Improving Seasonal Ensemble Streamflow Prediction Scheme with Various Statistical Post-Processing Techniques in the Canadian Prairie Region. Water (Switzerland), 2018, 10, 1604.	2.7	29
43	An overview of river flood forecasting procedures in Canadian watersheds. Canadian Water Resources Journal, 2019, 44, 213-229.	1.2	28
44	Entropy based groundwater monitoring network design considering spatial distribution of annual recharge. Advances in Water Resources, 2016, 96, 108-119.	3.8	27
45	Neural Network-Based Long-Term Hydropower Forecasting System. Computer-Aided Civil and Infrastructure Engineering, 2000, 15, 355-364.	9.8	26
46	Modeling the impacts of dryland agricultural reclamation on groundwater resources in Northern Egypt using sparse data. Journal of Hydrology, 2015, 520, 420-438.	5.4	25
47	Impact of meteorological predictions on real-time spring flow forecasting. Hydrological Processes, 2003, 17, 3791-3801.	2.6	24
48	Inter-Comparison of Different Bayesian Model Averaging Modifications in Streamflow Simulation. Water (Switzerland), 2019, 11, 1707.	2.7	24
49	Sensitivity of Entropy Method to Time Series Length in Hydrometric Network Design. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	1.9	22
50	Variability of Future Extreme Rainfall Statistics: Comparison of Multiple IDF Projections. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	1.9	22
51	Assessment of future changes in intensity-duration-frequency curves for Southern Ontario using North American (NA)-CORDEX models with nonstationary methods. Journal of Hydrology: Regional Studies, 2019, 22, 100587.	2.4	21
52	Flood Inundation Mapping in an Ungauged Basin. Water (Switzerland), 2020, 12, 1532.	2.7	21
53	Event-based model calibration approaches for selecting representative distributed parameters in semi-urban watersheds. Advances in Water Resources, 2018, 118, 12-27.	3.8	20
54	Probabilistic Flood Forecasting Using Hydrologic Uncertainty Processor with Ensemble Weather Forecasts. Journal of Hydrometeorology, 2019, 20, 1379-1398.	1.9	20

#	Article	IF	CITATIONS
55	Introducing entropy-based Bayesian model averaging for streamflow forecast. Journal of Hydrology, 2020, 591, 125577.	5.4	20
56	Reducing multiplicative bias of satellite soil moisture retrievals. Remote Sensing of Environment, 2015, 165, 109-122.	11.0	18
57	Design of an Optimal Soil Moisture Monitoring Network Using SMOS Retrieved Soil Moisture. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 3950-3959.	6.3	16
58	Hydrometric network design using dual entropy multi-objective optimization in the Ottawa River Basin. Hydrology Research, 2017, 48, 1639-1651.	2.7	16
59	Estimating Root Zone Soil Moisture at Continental Scale Using Neural Networks. Journal of the American Water Resources Association, 2017, 53, 220-237.	2.4	15
60	Historical Spatial and Temporal Climate Trends in Southern Ontario, Canada. Journal of Applied Meteorology and Climatology, 2017, 56, 2767-2787.	1.5	15
61	Downscaling Ensemble Weather Predictions for Improved Week-2 Hydrologic Forecasting. Journal of Hydrometeorology, 2011, 12, 1564-1580.	1.9	14
62	Pooled frequency analysis for intensity–duration–frequency curve estimation. Hydrological Processes, 2019, 33, 2080-2094.	2.6	14
63	Future shift in winter streamflow modulated by the internal variability of climate in southern Ontario. Hydrology and Earth System Sciences, 2020, 24, 3077-3096.	4.9	14
64	Application of SNODAS and hydrologic models to enhance entropy-based snow monitoring network design. Journal of Hydrology, 2018, 561, 688-701.	5.4	13
65	Evaluating the Dependence between Temperature and Precipitation to Better Estimate the Risks of Concurrent Extreme Weather Events. Advances in Meteorology, 2020, 2020, 1-16.	1.6	13
66	A deep learning model for predicting climate-induced disasters. Natural Hazards, 2021, 107, 1009-1034.	3.4	13
67	Potential of bias correction for downscaling passive microwave and soil moisture data. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6460-6479.	3.3	12
68	Evaluation of Radar Quantitative Precipitation Estimates (QPEs) as an Input of Hydrological Models for Hydrometeorological Applications. Journal of Hydrometeorology, 2020, 21, 1847-1864.	1.9	12
69	Assessing Hydrologic Uncertainty Processor Performance for Flood Forecasting in a Semiurban Watershed. Journal of Hydrologic Engineering - ASCE, 2019, 24, .	1.9	11
70	Climate indices to characterize climatic changes across southern Canada. Meteorological Applications, 2020, 27, e1861.	2.1	11
71	Identification of Hydrological Models for Enhanced Ensemble Reservoir Inflow Forecasting in a Large Complex Prairie Watershed. Water (Switzerland), 2019, 11, 2201.	2.7	10
72	Evaluation of Radar-Gauge Merging Techniques to Be Used in Operational Flood Forecasting in Urban Watersheds. Water (Switzerland), 2020, 12, 1494.	2.7	10

#	Article	IF	CITATIONS
73	Integration of hydrological models with entropy and multi-objective optimization based methods for designing specific needs streamflow monitoring networks. Journal of Hydrology, 2021, 593, 125876.	5.4	10
74	A temporal downscaling approach for sub-daily gridded extreme rainfall intensity estimation under climate change. Journal of Hydrology: Regional Studies, 2021, 35, 100811.	2.4	10
75	Hybrid Surrogate Model for Timely Prediction of Flash Flood Inundation Maps Caused by Rapid River Overflow. Forecasting, 2022, 4, 126-148.	2.8	10
76	Improved Spring Peak-Flow Forecasting Using Ensemble Meteorological Predictions. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	1.9	9
77	Application of SMOS Soil Moisture and Brightness Temperature at High Resolution With a Bias Correction Operator. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 1590-1605.	4.9	9
78	Estimates of gridded relative changes in 24-h extreme rainfall intensities based on pooled frequency analysis. Journal of Hydrology, 2019, 577, 123940.	5.4	9
79	Atmospheric circulation amplifies shift of winter streamflow in southern Ontario. Journal of Hydrology, 2019, 578, 124051.	5.4	8
80	Evaluation and bias correction of SNODAS snow water equivalent (SWE) for streamflow simulation in eastern Canadian basins. Hydrological Sciences Journal, 2019, 64, 1541-1555.	2.6	8
81	Introducing the Ensemble-Based Dual Entropy and Multiobjective Optimization for Hydrometric Network Design Problems: EnDEMO. Entropy, 2019, 21, 947.	2.2	7
82	HUPâ€BMA: An Integration of Hydrologic Uncertainty Processor and Bayesian Model Averaging for Streamflow Forecasting. Water Resources Research, 2021, 57, e2020WR029433.	4.2	7
83	Projected Changes in the Frequency of Peak Flows along the Athabasca River: Sensitivity of Results to Statistical Methods of Analysis. Climate, 2019, 7, 88.	2.8	6
84	Understanding Uncertainty in Probabilistic Floodplain Mapping in the Time of Climate Change. Water (Switzerland), 2021, 13, 1248.	2.7	6
85	Use of Radar Quantitative Precipitation Estimates (QPEs) for Improved Hydrological Model Calibration and Flood Forecasting. Journal of Hydrometeorology, 2021, , .	1.9	6
86	Spatially constrained clustering of ecological units to facilitate the design of integrated water monitoring networks in the St. Lawrence Basin. International Journal of Geographical Information Science, 2016, 30, 390-404.	4.8	5
87	Assessing Spatial Scale Effects on Hydrometric Network Design Using Entropy and Multiâ€objective Methods. Journal of the American Water Resources Association, 2018, 54, 275-286.	2.4	5
88	Evaluation of Snowmelt Estimation Techniques for Enhanced Spring Peak Flow Prediction. Water (Switzerland), 2020, 12, 1290.	2.7	5
89	Conservation planning as an adaptive strategy for climate change and groundwater depletion in Wadi El Natrun, Egypt. Hydrogeology Journal, 2018, 26, 689-703.	2.1	4
90	Technical guidelines for future intensity–duration–frequency curve estimation in Canada. Canadian Water Resources Journal, 2021, 46, 87-104.	1.2	4

#	Article	IF	CITATIONS
91	Data-based disaggregation of SMOS soil moisture. , 2014, , .		3
92	Data-Driven Community Flood Resilience Prediction. Water (Switzerland), 2022, 14, 2120.	2.7	3
93	2009 Special Issue of the Journal of Hydroinformatics on Advances in Hydroinformatics. Journal of Hydroinformatics, 2009, 11, 165-165.	2.4	2
94	Examining differences in streamflow estimation for gauged and ungauged catchments using evolutionary data assimilation. Journal of Hydroinformatics, 2014, 16, 392-406.	2.4	2
95	Application of weather Radar for operational hydrology in Canada – a review. Canadian Water Resources Journal, 2021, 46, 17-37.	1.2	2
96	Design of an optimum soil moisture monitoring network using SMOS. , 2014, , .		1