Junjie Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7287679/publications.pdf

Version: 2024-02-01

201674 206112 4,187 49 27 48 h-index citations g-index papers 49 49 49 5417 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Large-scale production of holey carbon nanosheets implanted with atomically dispersed Fe sites for boosting oxygen reduction electrocatalysis. Nano Research, 2022, 15, 1926-1933.	10.4	17
2	Highly dispersed Cr oxygenated species on Pt nanowire assemblies for enhanced electrocatalytic methanol oxidation. Chemical Communications, 2022, 58, 799-802.	4.1	3
3	Highly selective generation of singlet oxygen from dioxygen with atomically dispersed catalysts. Chemical Science, 2022, 13, 5606-5615.	7.4	9
4	Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Research, 2021, 14, 998-1003.	10.4	50
5	Synthesis and properties of Sr ²⁺ doping α-tricalcium phosphate at low temperature. Journal of Applied Biomaterials and Functional Materials, 2021, 19, 228080002199699.	1.6	6
6	Ligand-mediated strategy for the fabrication of hollow Fe-MOFs and their derived Fe/NC nanostructures with an enhanced oxygen reduction reaction. CrystEngComm, 2021, 23, 528-532.	2.6	3
7	Transforming cobalt hydroxide nanowires into single atom site catalysts. Nano Energy, 2021, 83, 105799.	16.0	19
8	<i>In Situ</i> Electrochemical Activation of Fe/Co-Based 8-Hydroxyquinoline Nanostructures on Copper Foam for Oxygen Evolution. ACS Applied Nano Materials, 2021, 4, 9409-9417.	5.0	13
9	Single-atom Fe–N4 site for the hydrogenation of nitrobenzene: theoretical and experimental studies. Dalton Transactions, 2021, 50, 7995-8001.	3.3	2
10	N-Bridged Co–N–Ni: new bimetallic sites for promoting electrochemical CO ₂ reduction. Energy and Environmental Science, 2021, 14, 3019-3028.	30.8	128
11	Design of Binary Cu–Fe Sites Coordinated with Nitrogen Dispersed in the Porous Carbon for Synergistic CO ₂ Electroreduction. Small, 2021, 17, e2006951.	10.0	63
12	Synergistic Modulation of the Separation of Photoâ€Generated Carriers via Engineering of Dual Atomic Sites for Promoting Photocatalytic Performance. Advanced Materials, 2021, 33, e2105904.	21.0	117
13	A single-atom Cu–N ₂ catalyst eliminates oxygen interference for electrochemical sensing of hydrogen peroxide in a living animal brain. Chemical Science, 2021, 12, 15045-15053.	7.4	36
14	Single-Atom Ru on Al ₂ O ₃ for Highly Active and Selective 1,2-Dichloroethane Catalytic Degradation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 53683-53690.	8.0	16
15	Atomically Dispersed Cu Anchored on Nitrogen and Boron Codoped Carbon Nanosheets for Enhancing Catalytic Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 61047-61054.	8.0	18
16	Photoinduction of Cu Single Atoms Decorated on UiO-66-NH ₂ for Enhanced Photocatalytic Reduction of CO ₂ to Liquid Fuels. Journal of the American Chemical Society, 2020, 142, 19339-19345.	13.7	373
17	Single-Atom Co–N ₄ Electrocatalyst Enabling Four-Electron Oxygen Reduction with Enhanced Hydrogen Peroxide Tolerance for Selective Sensing. Journal of the American Chemical Society, 2020, 142, 16861-16867.	13.7	184
18	Single-atom Ni-N4 provides a robust cellular NO sensor. Nature Communications, 2020, 11, 3188.	12.8	153

#	Article	IF	Citations
19	Scalable surface engineering of commercial metal foams for defect-rich hydroxides towards improved oxygen evolution. Journal of Materials Chemistry A, 2020, 8, 12603-12612.	10.3	23
20	Single atom alloy: An emerging atomic site material for catalytic applications. Nano Today, 2020, 34, 100917.	11.9	91
21	Isolated Ni Atoms Dispersed on Ru Nanosheets: High-Performance Electrocatalysts toward Hydrogen Oxidation Reaction. Nano Letters, 2020, 20, 3442-3448.	9.1	172
22	Single-atom electrocatalysis: a new approach to in vivo electrochemical biosensing. Science China Chemistry, 2019, 62, 1720-1724.	8.2	57
23	A single-atom Fe–N ₄ catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chemical Communications, 2019, 55, 159-162.	4.1	209
24	PtAu bimetallic nanocatalyst for selective hydrogenation of alkenes over aryl halides. Nano Research, 2019, 12, 1659-1662.	10.4	6
25	Structure regulation of noble-metal-based nanomaterials at an atomic level. Nano Today, 2019, 26, 164-175.	11.9	33
26	Microwave absorption performance of PDCs-SiCN(Fe) ceramics with negative imaginary permeability. Ceramics International, 2018, 44, 10420-10425.	4.8	35
27	Electromagnetic wave absorption properties of nickel-containing polymer-derived SiCN ceramics. Ceramics International, 2018, 44, 10945-10950.	4.8	35
28	Ultrathin Pt–Zn Nanowires: High-Performance Catalysts for Electrooxidation of Methanol and Formic Acid. ACS Sustainable Chemistry and Engineering, 2018, 6, 77-81.	6.7	52
29	Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nature Communications, 2018, 9, 4958.	12.8	264
30	The influence of carbon materials on the absorption performance of polymer-derived SiCN ceramics in X-band. Ceramics International, 2018, 44, 15686-15689.	4.8	25
31	Single Tungsten Atoms Supported on MOFâ€Derived Nâ€Doped Carbon for Robust Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, e1800396.	21.0	427
32	Metal/oxide interfacial effects on the selective oxidation of primary alcohols. Nature Communications, 2017, 8, 14039.	12.8	144
33	Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Science Advances, 2017, 3, e1603068.	10.3	224
34	Rational Control of the Selectivity of a Ruthenium Catalyst for Hydrogenation of 4â€Nitrostyrene by Strain Regulation. Angewandte Chemie, 2017, 129, 12133-12137.	2.0	12
35	Rational Control of the Selectivity of a Ruthenium Catalyst for Hydrogenation of 4â€Nitrostyrene by Strain Regulation. Angewandte Chemie - International Edition, 2017, 56, 11971-11975.	13.8	93
36	Bimetallic PdCo catalyst for selective direct formylation of amines by carbon monoxide. Nano Research, 2017, 10, 890-896.	10.4	17

#	Article	IF	CITATIONS
37	Kinetically Controlling Surface Structure to Construct Defectâ€Rich Intermetallic Nanocrystals: Effective and Stable Catalysts. Advanced Materials, 2016, 28, 2540-2546.	21.0	95
38	Pt–M (M = Cu, Fe, Zn, etc.) bimetallic nanomaterials with abundant surface defects and robust catalytic properties. Chemical Communications, 2016, 52, 5985-5988.	4.1	60
39	Controllable synthesis of Pt–Cu nanocrystals and their tunable catalytic properties. CrystEngComm, 2016, 18, 3764-3767.	2.6	6
40	A facile strategy for the synthesis of branched Pt–Pd–M (M = Co, Ni) trimetallic nanocrystals. CrystEngComm, 2016, 18, 4023-4026.	2.6	7
41	Ir–Cu nanoframes: one-pot synthesis and efficient electrocatalysts for oxygen evolution reaction. Chemical Communications, 2016, 52, 3793-3796.	4.1	73
42	Seed-mediated synthesis of hexameric octahedral PtPdCu nanocrystals with high electrocatalytic performance. Chemical Communications, 2015, 51, 15406-15409.	4.1	23
43	A used battery supported Ag catalyst for efficient oxidation of alcohols and carbon oxide. RSC Advances, 2014, 4, 25384-25388.	3.6	12
44	Bimetallic Pd–Cu nanocrystals and their tunable catalytic properties. Chemical Communications, 2014, 50, 4588.	4.1	68
45	Surfactant-free platinum nanocubes with greatly enhanced activity towards methanol/ethanol electrooxidation. RSC Advances, 2014, 4, 28832.	3. 6	14
46	Ultrathin rhodium nanosheets. Nature Communications, 2014, 5, 3093.	12.8	428
47	Preparation of bimetallic nanocrystals by coreduction of mixed metal ions in a liquid–solid–solution synthetic system according to the electronegativity of alloys. CrystEngComm, 2013, 15, 4806.	2.6	8
48	Electrocatalytic four-electron reduction of oxygen with Copper (II)-based metal-organic frameworks. Electrochemistry Communications, 2012, 19, 29-31.	4.7	256
49	Constructing the separation pathway for photo-generated carriers by diatomic sites decorated on MIL-53-NH2(Al) for enhanced photocatalytic performance. Nano Research, 0, , .	10.4	8