Soon-Chun Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7287406/publications.pdf

Version: 2024-02-01

74 papers

2,424 citations

201674 27 h-index 214800 47 g-index

78 all docs 78 docs citations

78 times ranked 2256 citing authors

#	Article	IF	CITATIONS
1	The discovery of novel SNPs associated with group A soyasaponin biosynthesis from Korea soybean core collection. Genomics, 2022, 114, 110432.	2.9	4
2	Environmental risk assessment of glufosinate-resistant soybean by pollen-mediated gene flow under field conditions in the region of the genetic origin. Science of the Total Environment, 2021, 762, 143073.	8.0	6
3	The patterns of deleterious mutations during the domestication of soybean. Nature Communications, 2021, 12, 97.	12.8	49
4	Fine-mapping and candidate gene analysis for the foxglove aphid resistance gene Raso2 from wild soybean PI 366121. Theoretical and Applied Genetics, 2021, 134, 2687-2698.	3.6	6
5	Genome assembly of the popular Korean soybean cultivar Hwangkeum. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	5
6	Elucidation of genomic organizations of transgenic soybean plants through de novo genome assembly with short paired-end reads. Molecular Breeding, $2021, 41, 1$.	2.1	6
7	Chromosomal features revealed by comparison of genetic maps of Glycine max and Glycine soja. Genomics, 2020, 112, 1481-1489.	2.9	8
8	Performance of hybrids between abiotic stress-tolerant transgenic rice and its weedy relatives under water-stressed conditions. Scientific Reports, 2020, 10, 9319.	3.3	5
9	Genome Resequencing, Improvement of Variant Calling, and Population Genomic Analyses Provide Insights into the Seedlessness in the Genus <i>Vitis</i> . G3: Genes, Genomes, Genetics, 2020, 10, 3365-3377.	1.8	6
10	Gene Flow from Transgenic PPO-inhibiting Herbicide-resistant Rice to Weedy Rice, and Agronomic Performance by Their Hybrids. Journal of Plant Biology, 2019, 62, 286-296.	2.1	4
11	Korean soybean core collection: Genotypic and phenotypic diversity population structure and genome-wide association study. PLoS ONE, 2019, 14, e0224074.	2.5	56
12	GmBRC1 is a Candidate Gene for Branching in Soybean (Glycine max (L.) Merrill). International Journal of Molecular Sciences, 2019, 20, 135.	4.1	23
13	Genetic diversity patterns and domestication origin of soybean. Theoretical and Applied Genetics, 2019, 132, 1179-1193.	3.6	44
14	Genetic analysis of the Lf1 gene that controls leaflet number in soybean. Theoretical and Applied Genetics, 2017, 130, 1685-1692.	3.6	5
15	Differences in the metabolic profiles and antioxidant activities of wild and cultivated black soybeans evaluated by correlation analysis. Food Research International, 2017, 100, 166-174.	6.2	25
16	GenoCore: A simple and fast algorithm for core subset selection from large genotype datasets. PLoS ONE, 2017, 12, e0181420.	2.5	41
17	Molecular Genetic Analysis of a Novel Recessive White Flower Gene in Wild Soybean. Crop Science, 2017, 57, 3027-3034.	1.8	1
18	Identification of haplotypes at the Rsv4 genomic region in soybean associated with durable resistance to soybean mosaic virus. Theoretical and Applied Genetics, 2016, 129, 453-468.	3.6	37

#	Article	IF	CITATIONS
19	Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant Journal, 2015, 81, 625-636.	5 . 7	125
20	Genetic diversity and population structure of wild soybean (<i>Glycine soja</i> Sieb. and Zucc.) accessions in Korea. Plant Genetic Resources: Characterisation and Utilisation, 2014, 12, S45-S48.	0.8	5
21	Multiple genes confer resistance to soybean mosaic virus in the soybean cultivar Hwangkeum. Plant Genetic Resources: Characterisation and Utilisation, 2014, 12, S41-S44.	0.8	7
22	Population Structure and Domestication Revealed by High-Depth Resequencing of Korean Cultivated and Wild Soybean Genomes. DNA Research, 2014, 21, 153-167.	3.4	92
23	Effects of transgenic poplars expressing increased levels of cellular cytokinin on rhizosphere microbial communities. European Journal of Soil Biology, 2014, 63, 78-82.	3.2	5
24	Drought stress-induced compositional changes in tolerant transgenic rice and its wild type. Food Chemistry, 2014, 153, 145-150.	8.2	32
25	Cross-Family Translational Genomics of Abiotic Stress-Responsive Genes between Arabidopsis and Medicago truncatula. PLoS ONE, 2014, 9, e91721.	2.5	19
26	Effects of Bt Cabbage (Brassica oleracea) on the Host Preference and Performance of the Green Peach Aphid, Myzus persicae Sulzer (Hemiptera: Aphididae). Korean Journal of Applied Entomology, 2014, 53, 193-197.	0.3	4
27	Gene Flow from GM Cabbage to Non-GM Control. Korean Journal of Agricultural Science, 2014, 41, 157-161.	0.1	0
28	Dynamic genetic features of chromosomes revealed by comparison of soybean genetic and sequence-based physical maps. Theoretical and Applied Genetics, 2013, 126, 1103-1119.	3.6	21
29	Characterization of SMV resistance of soybean produced by genetic transformation of SMV-CP gene in RNAi. Plant Biotechnology Reports, 2013, 7, 425-433.	1.5	33
30	Comparative analysis of key nutrient composition between drought-tolerant transgenic rice and its non-transgenic counterpart. Food Science and Biotechnology, 2013, 22, 1-7.	2.6	7
31	Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere, 2013, 90, 1478-1486.	8.2	111
32	<i>Ln</i> ls a Key Regulator of Leaflet Shape and Number of Seeds per Pod in Soybean. Plant Cell, 2013, 24, 4807-4818.	6.6	90
33	Fitness cost and competitive ability of transgenic herbicide-tolerant rice expressing a protoporphyrinogen oxidase gene. Journal of Ecology and Environment, 2013, 36, 39-47.	1.6	4
34	A molecular framework for risk assessment of a virus-tolerant transgenic pepper line. Journal of Crop Science and Biotechnology, 2012, 15, 107-115.	1.5	2
35	Two-year field study shows little evidence that PPO-transgenic rice affects the structure of soil microbial communities. Biology and Fertility of Soils, 2012, 48, 453-461.	4.3	15
36	Expression of the Arabidopsis AtMYB44 gene confers drought/salt-stress tolerance in transgenic soybean. Molecular Breeding, 2012, 29, 601-608.	2.1	73

#	Article	IF	CITATIONS
37	Do transgenic chili pepper plants producing viral coat protein affect the structure of a soil microbial community?. Applied Soil Ecology, 2011, 51, 130-138.	4.3	12
38	Gene flow from herbicide-tolerant GM rice and the heterosis of GM rice-weed F2 progeny. Planta, 2011, 233, 807-815.	3.2	20
39	Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. Theoretical and Applied Genetics, 2011, 122, 865-874.	3.6	52
40	Glycine max non-nodulation locus rj1: a recombinogenic region encompassing a SNP in a lysine motif receptor-like kinase (GmNFR1 $\hat{1}$ ±). Theoretical and Applied Genetics, 2011, 122, 875-884.	3.6	7
41	Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds. Genes and Genomics, 2011, 33, 685-692.	1.4	38
42	The <i>Rsv3</i> Locus Conferring Resistance to <i>Soybean Mosaic Virus</i> is Associated with a Cluster of Coiledâ€Coil Nucleotideâ€Binding Leucineâ€Rich Repeat Genes. Plant Genome, 2011, 4, .	2.8	50
43	Genetic Analysis of Genes Controlling Natural Variation of Seed Coat and Flower Colors in Soybean. Journal of Heredity, 2010, 101, 757-768.	2.4	84
44	Monitoring the occurrence of genetically modified maize at a grain receiving port and along transportation routes in the Republic of Korea. Food Control, 2010, 21, 456-461.	5.5	42
45	Whole-genome sequencing and intensive analysis of the undomesticated soybean (<i>Glycine soja</i>) Tj ETQq1 America, 2010, 107, 22032-22037.	1 0.78431 7.1	.4 rgBT /Cw 299
46	Validation and Interaction of the <i>Soybean Mosaic Virus</i> Lethal Necrosis Allele, <i>Rsv1â€n</i> , in PI 507389. Crop Science, 2009, 49, 1277-1283.	1.8	10
47	Marker-assisted identification of resistance genes to soybean mosaic virus in soybean lines. Euphytica, 2009, 169, 375-385.	1.2	16
48	Assessment of Gene Flow from Genetically Modified Anthracnose-Resistant Chili Pepper (Capsicum) Tj ETQq0 0 0	rgBT /Over 2.1	lgck 10 Tf 5
49	Monitoring the occurrence of genetically modified soybean and maize in cultivated fields and along the transportation routes of the Incheon Port in South Korea. Food Control, 2009, 20, 250-254.	5.5	68
50	Gene flow from genetically modified to conventional chili pepper (Capsicum annuum L.). Plant Science, 2009, 176, 406-412.	3.6	15
51	A framework for molecular genetic assessment of a transgenic watermelon rootstock line. Plant Science, 2009, 176, 805-811.	3.6	10
52	Development of genetically modified crops based on considerations of risk assessment and management. Journal of Plant Biotechnology, 2009, 36, 360-365.	0.4	6
53	Detection of gene flow from GM to non-GM watermelon in a field trial. Journal of Plant Biology, 2008, 51, 74-77.	2.1	8
54	Genome structure in soybean revealed by a genomewide genetic map constructed from a single population. Genomics, 2008, 92, 52-59.	2.9	18

#	Article	IF	CITATIONS
55	Genetic Linkage Map of the Nucleolus Organizer Region in the Soybean. Genetics, 2008, 178, 605-608.	2.9	5
56	Pyramiding of Soybean Mosaic Virus Resistance Genes by Markerâ€Assisted Selection. Crop Science, 2008, 48, 517-526.	1.8	96
57	Molecular analysis and quantitative detection of a transgenic rice line expressing a bifunctional fusion TPSP. Food Control, 2007, 18, 1434-1442.	5.5	23
58	Genetic discrimination betweenCatharanthus roseus cultivars by metabolic fingerprinting using 1H NMR spectra of aromatic compounds. Biotechnology and Bioprocess Engineering, 2007, 12, 646-652.	2.6	21
59	The Effect of the Anthracnose Resistant Chili Pepper (PepEST gene) on the Non-target Insects, Green Peach Aphids (Myzus persicae Sulzer, Homoptera). Korean Journal of Applied Entomology, 2007, 46, 343-348.	0.3	3
60	The characterization of bacterial community structure in the rhizosphere of watermelon (Citrullus) Tj ETQq0 0 0 (T-RFLP). Applied Soil Ecology, 2006, 33, 79-86.	rgBT /Ove 4.3	rlock 10 Tf 5
61	Structure, expression, and mapping of two nodule-specific genes identified by mining public soybean EST databases. Gene, 2006, 383, 71-80.	2.2	9
62	Application of comparative genomics in developing molecular markers tightly linked to the virus resistance gene Rsv4 in soybean. Genome, 2006, 49, 380-388.	2.0	54
63	Monitoring the occurrence of genetically modified soybean and maize around cultivated fields and at a grain receiving port in Korea. Journal of Plant Biology, 2006, 49, 218-223.	2.1	43
64	Principal component analysis and discriminant analysis (PCA–DA) for discriminating profiles of terminal restriction fragment length polymorphism (T-RFLP) in soil bacterial communities. Soil Biology and Biochemistry, 2006, 38, 2344-2349.	8.8	36
65	Environmental Risk Assessment of Watermelon Grafted onto Transgenic Rootstock Resistant to Cucumber Green Mottle Mosaic Virus (CGMMV) on Non-Target Insects in Conventional Agro-Ecosystem. Journal of Ecology and Environment, 2006, 29, 323-330.	1.6	2
66	Recombination Within a Nucleotide-Binding-Site/Leucine-Rich-Repeat Gene Cluster Produces New Variants Conditioning Resistance to Soybean Mosaic Virus in Soybeans. Genetics, 2004, 166, 493-503.	2.9	139
67	Detection and genotyping of SNPs tightly linked to two disease resistance loci, Rsv1 and Rsv3, of soybean. Plant Breeding, 2004, 123, 305-310.	1.9	74
68	Recent Progress in the Evolution and Ecology of Actinorhizal Symbioses. Plant Pathology Journal, 2003, 19, 1-8.	1.7	1
69	Population size and diversity of Frankia in soils of Ceanothus velutinus and Douglas-fir stands. Soil Biology and Biochemistry, 2001, 33, 931-941.	8.8	27
70	Diversity and evolution of a non-TIR-NBS sequence family that clusters to a chromosomal ''hotspot― for disease resistance genes in soybean. Theoretical and Applied Genetics, 2001, 103, 406-414.	3.6	39
71	Genomic fingerprinting of <i>Frankia </i> microsymbionts from <i>Ceanothus </i> copopulations using repetitive sequences and polymerase chain reactions. Canadian Journal of Botany, 1999, 77, 1220-1230.	1.1	4
72	Molecular Phylogenies of Plants and Frankia Support Multiple Origins of Actinorhizal Symbioses. Molecular Phylogenetics and Evolution, 1999, 13, 493-503.	2.7	48

Soon-Chun Jeong

#	Article	IF	CITATIONS
73	Genomic fingerprinting of <i>Frankia</i> microsymbionts from <i>Ceanothus</i> copopulations using repetitive sequences and polymerase chain reactions. Canadian Journal of Botany, 1999, 77, 1220-1230.	1.1	25
74	Molecular phylogeny of the genus Ceanothus (Rhamnaceae) using rbc L and ndh F sequences. Theoretical and Applied Genetics, 1997, 94, 852-857.	3.6	23