
Jitka ForstovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7285668/publications.pdf Version: 2024-02-01

Ιιτέλ Εορετονά:

#	Article	IF	CITATIONS
1	VirPorters: Insights into the action of cationic and histidine-rich cell-penetrating peptides. International Journal of Pharmaceutics, 2022, 611, 121308.	5.2	4
2	Nuclear Cytoskeleton in Virus Infection. International Journal of Molecular Sciences, 2022, 23, 578.	4.1	3
3	The Interplay between Viruses and Host DNA Sensors. Viruses, 2022, 14, 666.	3.3	18
4	TLR4-Mediated Recognition of Mouse Polyomavirus Promotes Cancer-Associated Fibroblast-Like Phenotype and Cell Invasiveness. Cancers, 2021, 13, 2076.	3.7	3
5	Immune sensing of mouse polyomavirus DNA by p204 and cGAS DNA sensors. FEBS Journal, 2021, 288, 5964-5985.	4.7	3
6	Influence of cell-penetrating peptides on the activity and stability of virus-based nanoparticles. International Journal of Pharmaceutics, 2020, 576, 119008.	5.2	8
7	Microtubules in Polyomavirus Infection. Viruses, 2020, 12, 121.	3.3	12
8	The Major Capsid Protein, VP1, of the Mouse Polyomavirus Stimulates the Activity of Tubulin Acetyltransferase 1 by Microtubule Stabilization. Viruses, 2020, 12, 227.	3.3	5
9	The Protein Corona Does Not Influence Receptor-Mediated Targeting of Virus-like Particles. Bioconjugate Chemistry, 2020, 31, 1575-1585.	3.6	20
10	Prevalence of antibodies against BKPyV subtype I and IV in kidney transplant recipients and in the general Czech population. Journal of Medical Virology, 2019, 91, 856-864.	5.0	5
11	Inhibitor–GCPII Interaction: Selective and Robust System for Targeting Cancer Cells with Structurally Diverse Nanoparticles. Molecular Pharmaceutics, 2018, 15, 2932-2945.	4.6	25
12	Interaction of the Mouse Polyomavirus Capsid Proteins with Importins Is Required for Efficient Import of Viral DNA into the Cell Nucleus. Viruses, 2018, 10, 165.	3.3	10
13	Hydrophobic domains of mouse polyomavirus minor capsid proteins promote membrane association and virus exit from the <scp>ER</scp> . FEBS Journal, 2017, 284, 883-902.	4.7	9
14	Retargeting Polyomavirus-Like Particles to Cancer Cells by Chemical Modification of Capsid Surface. Bioconjugate Chemistry, 2017, 28, 307-313.	3.6	10
15	VP1, the major capsid protein of the mouse polyomavirus, binds microtubules, promotes their acetylation and blocks the host cell cycle. FEBS Journal, 2017, 284, 301-323.	4.7	12
16	Exploitation of stable nanostructures based on the mouse polyomavirus for development of a recombinant vaccine against porcine circovirus 2. PLoS ONE, 2017, 12, e0184870.	2.5	5
17	Antibacterial, Antiviral, and Oxygen-Sensing Nanoparticles Prepared from Electrospun Materials. ACS Applied Materials & Interfaces, 2016, 8, 25127-25136.	8.0	39
18	Mouse Polyomavirus: Propagation, Purification, Quantification, and Storage. Current Protocols in Microbiology, 2015, 38, 14F.1.1-26.	6.5	7

Jitka ForstovÃi

#	Article	IF	CITATIONS
19	Involvement of Microtubular Network and Its Motors in Productive Endocytic Trafficking of Mouse Polyomavirus. PLoS ONE, 2014, 9, e96922.	2.5	27
20	Coat as a Dagger: The Use of Capsid Proteins to Perforate Membranes during Non-Enveloped DNA Viruses Trafficking. Viruses, 2014, 6, 2899-2937.	3.3	13
21	The encapsidation of polyomavirus is not defined by a sequence-specific encapsidation signal. Virology, 2014, 450-451, 122-131.	2.4	2
22	Superhydrophilic Polystyrene Nanofiber Materials Generating O ₂ (¹ î" _g): Postprocessing Surface Modifications toward Efficient Antibacterial Effect. ACS Applied Materials & Interfaces, 2014, 6, 13007-13014.	8.0	62
23	Seroprevalence rates of BKV, JCV, and MCPyV polyomaviruses in the general Czech Republic population. Journal of Medical Virology, 2014, 86, 1560-1568.	5.0	34
24	The Cre/loxP recombination system for production of infectious mouse polyomavirus. Virus Research, 2013, 176, 128-136.	2.2	4
25	Nucleofection of Expression Vectors Induces a Robust Interferon Response and Inhibition of Cell Proliferation. DNA and Cell Biology, 2013, 32, 467-479.	1.9	27
26	Nuclear Actin and Lamins in Viral Infections. Viruses, 2012, 4, 325-347.	3.3	24
27	Virucidal Nanofiber Textiles Based on Photosensitized Production of Singlet Oxygen. PLoS ONE, 2012, 7, e49226.	2.5	38
28	Blue native protein electrophoresis for studies of mouse polyomavirus morphogenesis and interactions between the major capsid protein VP1 and cellular proteins. Journal of Virological Methods, 2011, 178, 229-234.	2.1	4
29	Polyomavirus Middle T-Antigen Is a Transmembrane Protein That Binds Signaling Proteins in Discrete Subcellular Membrane Sites. Journal of Virology, 2011, 85, 3046-3054.	3.4	14
30	Minor capsid proteins of mouse polyomavirus are inducers of apoptosis when produced individually but are only moderate contributors to cell death during the late phase of viral infection. FEBS Journal, 2010, 277, 1270-1283.	4.7	10
31	Bcr-Abl fusion sequences do not induce immune responses in mice when administered in mouse polyomavirus based virus-like particles. International Journal of Oncology, 2009, 35, 1247-56.	3.3	3
32	Cellular and humoral immune responses to chimeric EGFP-pseudocapsids derived from the mouse polyomavirus after their intranasal administration. Vaccine, 2008, 26, 3242-3251.	3.8	14
33	Assemblages of simian virus 40 capsid proteins and viral DNA visualized by electron microscopy. Biochemical and Biophysical Research Communications, 2007, 353, 424-430.	2.1	19
34	Mouse Polyomavirus Enters Early Endosomes, Requires Their Acidic pH for Productive Infection, and Meets Transferrin Cargo in Rab11-Positive Endosomes. Journal of Virology, 2006, 80, 4610-4622.	3.4	68
35	Point mutation in calcium-binding domain of mouse polyomavirus VP1 protein does not prevent virus-like particle formation, but changes VP1 interactions with cell structures. FEMS Yeast Research, 2005, 5, 331-340.	2.3	6
36	Polyomavirus EGFP-pseudocapsids: Analysis of model particles for introduction of proteins and peptides into mammalian cells. FEBS Letters, 2005, 579, 6549-6558.	2.8	38

Jitka ForstovÃi

#	Article	IF	CITATIONS
37	VP1 pseudocapsids, but not a glutathione-S-transferase VP1 fusion protein, prevent polyomavirus infection in a T-cell immune deficient experimental mouse model. Journal of Medical Virology, 2003, 70, 293-300.	5.0	22
38	Mouse polyomavirus large T antigen inhibits cell growth and alters cell and colony morphology inSaccharomyces cerevisiae. FEBS Letters, 2003, 555, 268-273.	2.8	4
39	Mouse Polyomavirus Utilizes Recycling Endosomes for a Traffic Pathway Independent of COPI Vesicle Transport. Journal of Virology, 2003, 77, 1672-1681.	3.4	56
40	Amino acids control ammonia pulses in yeast colonies. Biochemical and Biophysical Research Communications, 2002, 294, 962-967.	2.1	26
41	Analysis of mouse polyomavirus mutants with lesions in the minor capsid proteins. Journal of General Virology, 2002, 83, 2309-2319.	2.9	30
42	Differentiated Gene Expression in Cells within Yeast Colonies. Experimental Cell Research, 2001, 271, 296-304.	2.6	30
43	The polyomavirus major capsid protein VP1 interacts with the nuclear matrix regulatory protein YY1. FEBS Letters, 2000, 467, 359-364.	2.8	15
44	Interactions of heterologous DNA with polyomavirus major structural protein, VP1. FEBS Letters, 1999, 445, 119-125.	2.8	29
45	Ammonia mediates communication between yeast colonies. Nature, 1997, 390, 532-536.	27.8	194
46	Expression of biologically active middle T antigen of polyoma virus from recombinant baculoviruses. Nucleic Acids Research, 1989, 17, 1427-1443.	14.5	16
47	Correlation of physical maps and some genetic functions in the genomes of the κ-Ï [¢] phage family of Bacillus licheniformis. Molecular Genetics and Genomics, 1988, 214, 343-347.	2.4	6
48	Physical mapping of LP51 and LP52 prophages of lysogenic strains of Bacillus licheniformis. Molecular Genetics and Genomics, 1986, 205, 530-534.	2.4	1