
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7285219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ZmTE1 promotes plant height by regulating intercalary meristem formation and internode cell elongation in maize. Plant Biotechnology Journal, 2022, 20, 526-537.	8.3	27
2	Auxin signaling: Research advances over the past 30 years. Journal of Integrative Plant Biology, 2022, 64, 371-392.	8.5	87
3	<i>Serratia marcescens</i> PLR enhances lateral root formation through supplying PLR-derived auxin and enhancing auxin biosynthesis in Arabidopsis. Journal of Experimental Botany, 2022, 73, 3711-3725.	4.8	13
4	Time-series transcriptome comparison reveals the gene regulation network under salt stress in soybean (Glycine max) roots. BMC Plant Biology, 2022, 22, 157.	3.6	14
5	A feedback regulation between ARF7â€mediated auxin signaling and auxin homeostasis involving MES17 affects plant gravitropism. Journal of Integrative Plant Biology, 2022, 64, 1339-1351.	8.5	6
6	Genome-Wide Identification of Auxin Response Factors in Peanut (Arachis hypogaea L.) and Functional Analysis in Root Morphology. International Journal of Molecular Sciences, 2022, 23, 5309.	4.1	5
7	The preâ€mRNA splicing factor RDM16 regulates root stem cell maintenance in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2021, 63, 662-678.	8.5	7
8	CO2 is a key constituent of the plant growth-promoting volatiles generated by bacteria in a sealed system. Plant Cell Reports, 2021, 40, 59-68.	5.6	8
9	MPK14-mediated auxin signaling controls lateral root development via ERF13-regulated very-long-chain fatty acid biosynthesis. Molecular Plant, 2021, 14, 285-297.	8.3	57
10	Light participates in the auxinâ€dependent regulation of plant growth. Journal of Integrative Plant Biology, 2021, 63, 819-822.	8.5	15
11	Cell kinetics of auxin transport and activity in Arabidopsis root growth and skewing. Nature Communications, 2021, 12, 1657.	12.8	30
12	SIZ1 negatively regulates aluminum resistance by mediating the STOP1–ALMT1 pathway in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2021, 63, 1147-1160.	8.5	32
13	Cellâ€ŧype action specificity of auxin on <i>Arabidopsis</i> root growth. Plant Journal, 2021, 106, 928-941.	5.7	11
14	Local regulation of auxin transport in rootâ€apex transition zone mediates aluminiumâ€induced Arabidopsis rootâ€growth inhibition. Plant Journal, 2021, 108, 55-66.	5.7	14
15	The Arabidopsis Root Tip (Phospho)Proteomes at Growth-Promoting versus Growth-Repressing Conditions Reveal Novel Root Growth Regulators. Cells, 2021, 10, 1665.	4.1	8
16	MPK3/6â€induced degradation of ARR1/10/12 promotes salt tolerance in <i>Arabidopsis</i> . EMBO Reports, 2021, 22, e52457.	4.5	37
17	Production of purple Ma bamboo (Dendrocalamus latiflorus Munro) with enhanced drought and cold stress tolerance by engineering anthocyanin biosynthesis. Planta, 2021, 254, 50.	3.2	15
18	AhABI4s Negatively Regulate Salt-Stress Response in Peanut. Frontiers in Plant Science, 2021, 12, 741641.	3.6	12

#	Article	IF	CITATIONS
19	Transition Zone1 Negatively Regulates Arabidopsis Aluminum Resistance Through Interaction With Aconitases. Frontiers in Plant Science, 2021, 12, 827797.	3.6	Ο
20	Nonâ€canonical <scp>AUX</scp> / <scp>IAA</scp> protein <scp>IAA</scp> 33 competes with canonical <scp>AUX</scp> / <scp>IAA</scp> repressor <scp>IAA</scp> 5 to negatively regulate auxin signaling. EMBO Journal, 2020, 39, e101515.	7.8	62
21	Antagonistic Interaction between Auxin and SA Signaling Pathways Regulates Bacterial Infection through Lateral Root in Arabidopsis. Cell Reports, 2020, 32, 108060.	6.4	38
22	How Plant Hormones Mediate Salt Stress Responses. Trends in Plant Science, 2020, 25, 1117-1130.	8.8	426
23	<scp>KUP</scp> 9 maintains root meristem activity by regulating K ⁺ and auxin homeostasis in response to low K. EMBO Reports, 2020, 21, e50164.	4.5	43
24	Initiation and maintenance of plant stem cells in root and shoot apical meristems. ABIOTECH, 2020, 1, 194-204.	3.9	11
25	AtHB7/12 Regulate Root Growth in Response to Aluminum Stress. International Journal of Molecular Sciences, 2020, 21, 4080.	4.1	19
26	Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology, 2020, 15, 755-760.	31.5	619
27	PIFs coordinate shade avoidance by inhibiting auxin repressor <i>ARF18</i> and metabolic regulator <i>QQS</i> . New Phytologist, 2020, 228, 609-621.	7.3	29
28	IPyA glucosylation mediates light and temperature signaling to regulate auxin-dependent hypocotyl elongation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6910-6917.	7.1	39
29	PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana. PLoS Genetics, 2020, 16, e1008044.	3.5	34
30	Nanoplastics Promote Microcystin Synthesis and Release from Cyanobacterial <i>Microcystis aeruginosa</i> . Environmental Science & Technology, 2020, 54, 3386-3394.	10.0	136
31	Short-term exposure to positively charged polystyrene nanoparticles causes oxidative stress and membrane destruction in cyanobacteria. Environmental Science: Nano, 2019, 6, 3072-3079.	4.3	79
32	GUN1-Interacting Proteins Open the Door for Retrograde Signaling. Trends in Plant Science, 2019, 24, 884-887.	8.8	7
33	HEADLESS Regulates Auxin Response and Compound Leaf Morphogenesis in Medicago truncatula. Frontiers in Plant Science, 2019, 10, 1024.	3.6	19
34	Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana. Cell Research, 2019, 29, 984-993.	12.0	61
35	Contribution of Microbial Inter-kingdom Balance to Plant Health. Molecular Plant, 2019, 12, 148-149.	8.3	12
36	Local Auxin Biosynthesis Mediates Plant Growth and Development. Trends in Plant Science, 2019, 24, 6-9.	8.8	46

#	Article	IF	CITATIONS
37	The Root Transition Zone: A Hot Spot for Signal Crosstalk. Trends in Plant Science, 2018, 23, 403-409.	8.8	78
38	PHB3 Maintains Root Stem Cell Niche Identity through ROS-Responsive AP2/ERF Transcription Factors in Arabidopsis. Cell Reports, 2018, 22, 1350-1363.	6.4	128
39	Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nature Communications, 2018, 9, 1063.	12.8	169
40	Auxin Efflux Carrier ZmPGP1 Mediates Root Growth Inhibition under Aluminum Stress. Plant Physiology, 2018, 177, 819-832.	4.8	44
41	ROS: The Fine-Tuner of Plant Stem Cell Fate. Trends in Plant Science, 2018, 23, 850-853.	8.8	44
42	Ethylene promotes cadmiumâ€induced root growth inhibition through <scp>EIN3</scp> controlled <scp><i>XTH33</i></scp> and <scp><i>LSU1</i></scp> expression in <scp><i>Arabidopsis</i></scp> . Plant, Cell and Environment, 2018, 41, 2449-2462.	5.7	44
43	Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genetics, 2018, 14, e1007144.	3.5	152
44	The metabolic sensor AKIN10 modulates the <scp><i>Arabidopsis</i></scp> circadian clock in a lightâ€dependent manner. Plant, Cell and Environment, 2017, 40, 997-1008.	5.7	55
45	<i><scp>LEUNIG</scp>_<scp>HOMOLOG</scp></i> transcriptional coâ€repressor mediates aluminium sensitivity through <i><scp>PECTIN METHYLESTERASE</scp>46</i> â€modulated root cell wall pectin methylesterification in Arabidopsis. Plant Journal, 2017, 90, 491-504.	5.7	48
46	Synergistic action of auxin and cytokinin mediates aluminumâ€induced root growth inhibition in <i>Arabidopsis</i> . EMBO Reports, 2017, 18, 1213-1230.	4.5	80
47	Jasmonic Acid Enhances Al-Induced Root Growth Inhibition. Plant Physiology, 2017, 173, 1420-1433.	4.8	79
48	Auxin-BR Interaction Regulates Plant Growth and Development. Frontiers in Plant Science, 2017, 8, 2256.	3.6	92
49	A P-Loop NTPase Regulates Quiescent Center Cell Division and Distal Stem Cell Identity through the Regulation of ROS Homeostasis in Arabidopsis Root. PLoS Genetics, 2016, 12, e1006175.	3.5	80
50	Local Transcriptional Control of YUCCA Regulates Auxin Promoted Root-Growth Inhibition in Response to Aluminium Stress in Arabidopsis. PLoS Genetics, 2016, 12, e1006360.	3.5	98
51	Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress. Plant Physiology and Biochemistry, 2016, 109, 467-481.	5.8	34
52	26S Proteasome: Hunter and Prey in Auxin Signaling. Trends in Plant Science, 2016, 21, 546-548.	8.8	10
53	Meristem Biology Flourishes Under Mt. Tai. Molecular Plant, 2016, 9, 1224-1227.	8.3	0
54	Topoisomerase II-associated protein PAT1H1 is involved in the root stem cell niche maintenance in Arabidopsis thaliana. Plant Cell Reports, 2016, 35, 1297-1307.	5.6	10

#	Article	IF	CITATIONS
55	Potassium Retention under Salt Stress Is Associated with Natural Variation in Salinity Tolerance among Arabidopsis Accessions. PLoS ONE, 2015, 10, e0124032.	2.5	69
56	The <i>Arabidopsis thaliana</i> elongator complex subunit 2 epigenetically affects root development. Journal of Experimental Botany, 2015, 66, 4631-4642.	4.8	32
57	Endocytosis and its regulation in plants. Trends in Plant Science, 2015, 20, 388-397.	8.8	198
58	WOX5 is Shining in the Root Stem Cell Niche. Trends in Plant Science, 2015, 20, 601-603.	8.8	45
59	Comparative Transcriptome Profiling of the Maize Primary, Crown and Seminal Root in Response to Salinity Stress. PLoS ONE, 2015, 10, e0121222.	2.5	31
60	WOX5–IAA17 Feedback Circuit-Mediated Cellular Auxin Response Is Crucial for the Patterning of Root Stem Cell Niches in Arabidopsis. Molecular Plant, 2014, 7, 277-289.	8.3	125
61	A facile nitrogen-doped carbon encapsulation of CoFe2O4 nanocrystalline for enhanced performance of lithium ion battery anodes. Journal of Solid State Electrochemistry, 2014, 18, 19-27.	2.5	10
62	Shaping a root system: regulating lateral versus primary root growth. Trends in Plant Science, 2014, 19, 426-431.	8.8	172
63	The key players of the primary root growth and development also function in lateral roots in Arabidopsis. Plant Cell Reports, 2014, 33, 745-753.	5.6	68
64	Designer crops: optimal root system architecture for nutrient acquisition. Trends in Biotechnology, 2014, 32, 597-598.	9.3	66
65	TAA1-Regulated Local Auxin Biosynthesis in the Root-Apex Transition Zone Mediates the Aluminum-Induced Inhibition of Root Growth in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2014, 26, 2889-2904.	6.6	173
66	System analysis of micro <scp>RNA</scp> s in the development and aluminium stress responses of the maize root system. Plant Biotechnology Journal, 2014, 12, 1108-1121.	8.3	47
67	Enhanced rate performance and cycling stability of a CoCO3–polypyrrole composite for lithium ion battery anodes. Journal of Materials Chemistry A, 2013, 1, 11200.	10.3	91
68	Localised ABA signalling mediates root growth plasticity. Trends in Plant Science, 2013, 18, 533-535.	8.8	42
69	Auxin gradient is crucial for the maintenance of root distal stem cell identity in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2013, 8, e26429.	2.4	26
70	ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nature Communications, 2012, 3, 941.	12.8	233
71	Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nature Cell Biology, 2011, 13, 447-452.	10.3	295
72	Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22344-22349.	7.1	287

#	Article	IF	CITATIONS
73	Role of PIN-mediated auxin efflux in apical hook development of <i>Arabidopsis thaliana</i> . Development (Cambridge), 2010, 137, 607-617.	2.5	297
74	Auxin regulates distal stem cell differentiation in <i>Arabidopsis</i> roots. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12046-12051.	7.1	346