
Pascal Benquet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7284784/publications.pdf Version: 2024-02-01

PASCAL RENOLIET

#	Article	IF	CITATIONS
1	Spatio-temporal dynamics of large-scale electrophysiological networks during cognitive action control in healthy controls and Parkinson's disease patients. NeuroImage, 2022, 258, 119331.	4.2	5
2	In silico model reveals the key role of GABA in KCNT1 â€epilepsy in infancy with migrating focal seizures. Epilepsia, 2021, 62, 683-697.	5.1	6
3	Long term evolution of fast ripples during epileptogenesis. Journal of Neural Engineering, 2021, 18, 046027.	3.5	4
4	Dynamics of task-related electrophysiological networks: a benchmarking study. NeuroImage, 2021, 231, 117829.	4.2	12
5	Decoding the circuitry of consciousness: From local microcircuits to brain-scale networks. Network Neuroscience, 2020, 4, 315-337.	2.6	18
6	Modelling acute and lasting effects of tDCS on epileptic activity. Journal of Computational Neuroscience, 2020, 48, 161-176.	1.0	11
7	KCNT1 epilepsy with migrating focal seizures shows a temporal sequence with poor outcome, high mortality and SUDEP. Brain, 2019, 142, 2996-3008.	7.6	35
8	Decreased integration of EEG source-space networks in disorders of consciousness. NeuroImage: Clinical, 2019, 23, 101841.	2.7	52
9	Detecting transient brain states of functional connectivity: A comparative study. , 2019, , .		0
10	COALIA: A Computational Model of Human EEG for Consciousness Research. Frontiers in Systems Neuroscience, 2019, 13, 59.	2.5	40
11	Reconstruction of post-synaptic potentials by reverse modeling of local field potentials. Journal of Neural Engineering, 2019, 16, 026023.	3.5	3
12	Quantitative analysis and <scp>EEG</scp> markers of <scp>KCNT</scp> 1 epilepsy of infancy with migrating focal seizures. Epilepsia, 2019, 60, 20-32.	5.1	13
13	On the origin of epileptic High Frequency Oscillations observed on clinical electrodes. Clinical Neurophysiology, 2018, 129, 829-841.	1.5	20
14	Physiological effects of low-magnitude electric fields on brain activity: Advances from inÂvitro, inÂvivo and in silico models. Current Opinion in Biomedical Engineering, 2018, 8, 38-44.	3.4	33
15	The move: When neurosciences teach us to better teach neurosciences. Journal of the Neurological Sciences, 2018, 391, 149-150.	0.6	1
16	Model-guided control of hippocampal discharges by local direct current stimulation. Scientific Reports, 2017, 7, 1708.	3.3	10
17	Estimating the dominant frequency of High Frequency Oscillations in depth-EEG signals. , 2017, , .		0
18	A New Computational Model for Neuro-Glio-Vascular Coupling: Astrocyte Activation Can Explain Cerebral Blood Flow Nonlinear Response to Interictal Events. PLoS ONE, 2016, 11, e0147292.	2.5	20

Pascal Benquet

#	Article	IF	CITATIONS
19	Computational models of epileptiform activity. Journal of Neuroscience Methods, 2016, 260, 233-251.	2.5	152
20	Low-intensity Local Direct Current modulates interictal discharges in mTLE: Computational and experimental insights. , 2015, , .		1
21	Future of Seizure Prediction and Intervention. Journal of Clinical Neurophysiology, 2015, 32, 194-206.	1.7	67
22	Dynamic reorganization of functional brain networks during picture naming. Cortex, 2015, 73, 276-288.	2.4	89
23	Shape features of epileptic spikes are a marker of epileptogenesis in mice. Epilepsia, 2013, 54, 2219-2227.	5.1	43
24	Modulation of epileptic activity by deep brain stimulation: a model-based study of frequency-dependent effects. Frontiers in Computational Neuroscience, 2013, 7, 94.	2.1	67
25	Neuron to Astrocyte Communication via Cannabinoid Receptors Is Necessary for Sustained Epileptiform Activity in Rat Hippocampus. PLoS ONE, 2012, 7, e37320.	2.5	34
26	Distinct hyperexcitability mechanisms underlie fast ripples and epileptic spikes. Annals of Neurology, 2012, 71, 342-352.	5.3	72
27	Interictal spikes, fast ripples and seizures in partial epilepsies – combining multiâ€level computational models with experimental data. European Journal of Neuroscience, 2012, 36, 2164-2177.	2.6	61
28	Expression, Regulation, and Potential Functions of Aromatase in Radial Glial Cells of the Fish Brain. , 2012, , 115-137.		2
29	Energy deprivation transiently enhances rhythmic inhibitory events in the CA3 hippocampal network in vitro. Neuroscience, 2010, 168, 605-612.	2.3	6
30	Computational modeling of high-frequency oscillations at the onset of neocortical partial seizures: From â€~altered structure' to â€~dysfunction'. NeuroImage, 2010, 52, 1109-1122.	4.2	70
31	Time-domain features of epileptic spikes as potential bio-markers of the epileptogenesis process. , 2010, 2010, 6007-10.		2
32	Analysis of Intracerebral EEG Recordings of Epileptic Spikes: Insights From a Neural Network Model. IEEE Transactions on Biomedical Engineering, 2009, 56, 2782-2795.	4.2	50
33	Metabotropic glutamate receptors: intracellular signaling pathways. Current Opinion in Pharmacology, 2007, 7, 56-61.	3.5	104
34	NMDA receptors and the differential ischemic vulnerability of hippocampal neurons. European Journal of Neuroscience, 2006, 23, 2595-2603.	2.6	71
35	Muscarinic receptor stimulation reduces NMDA responses in CA3 hippocampal pyramidal cells via Ca-dependent activation of tyrosine phosphatase. Neuropharmacology, 2005, 49, 328-337.	4.1	36
36	In vitro development of P- and R-like calcium currents in insect (Periplaneta americana) embryonic brain neurons. Neuroscience Letters, 2004, 365, 228-232.	2.1	5

Pascal Benquet

#	Article	IF	CITATIONS
37	Differential Calcium-Dependent Modulation of NMDA Currents in CA1 and CA3 Hippocampal Pyramidal Cells. Journal of Neuroscience, 2004, 24, 350-355.	3.6	41
38	Group I metabotropic glutamate receptors activate a calciumâ€sensitive transient receptor potentialâ€like conductance in rat hippocampus. Journal of Physiology, 2003, 546, 655-664.	2.9	110
39	Differential Involvement of Ca2+ Channels in Survival and Neurite Outgrowth of Cultured Embryonic Cockroach Brain Neurons. Journal of Neurophysiology, 2002, 88, 1475-1490.	1.8	20
40	Two Distinct Signaling Pathways Upregulate NMDA Receptor Responses via Two Distinct Metabotropic Glutamate Receptor Subtypes. Journal of Neuroscience, 2002, 22, 9679-9686.	3.6	171
41	Properties and development of calcium currents in embryonic cockroach neurons. Neuroscience Letters, 2000, 294, 49-52.	2.1	8
42	ω-AgalVA–Sensitive (P/Q-type) and –Resistant (R-type) High-Voltage–Activated Ba2+ Currents in Embryonic Cockroach Brain Neurons. Journal of Neurophysiology, 1999, 82, 2284-2293.	1.8	25