Pascal Benquet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7284784/publications.pdf

Version: 2024-02-01

331670 315739 1,614 42 21 38 h-index citations g-index papers 50 50 50 2218 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Two Distinct Signaling Pathways Upregulate NMDA Receptor Responses via Two Distinct Metabotropic Glutamate Receptor Subtypes. Journal of Neuroscience, 2002, 22, 9679-9686.	3.6	171
2	Computational models of epileptiform activity. Journal of Neuroscience Methods, 2016, 260, 233-251.	2.5	152
3	Group I metabotropic glutamate receptors activate a calciumâ€sensitive transient receptor potentialâ€like conductance in rat hippocampus. Journal of Physiology, 2003, 546, 655-664.	2.9	110
4	Metabotropic glutamate receptors: intracellular signaling pathways. Current Opinion in Pharmacology, 2007, 7, 56-61.	3.5	104
5	Dynamic reorganization of functional brain networks during picture naming. Cortex, 2015, 73, 276-288.	2.4	89
6	Distinct hyperexcitability mechanisms underlie fast ripples and epileptic spikes. Annals of Neurology, 2012, 71, 342-352.	5.3	72
7	NMDA receptors and the differential ischemic vulnerability of hippocampal neurons. European Journal of Neuroscience, 2006, 23, 2595-2603.	2.6	71
8	Computational modeling of high-frequency oscillations at the onset of neocortical partial seizures: From †altered structure†to †dysfunctionâ€. Neurolmage, 2010, 52, 1109-1122.	4.2	70
9	Modulation of epileptic activity by deep brain stimulation: a model-based study of frequency-dependent effects. Frontiers in Computational Neuroscience, 2013, 7, 94.	2.1	67
10	Future of Seizure Prediction and Intervention. Journal of Clinical Neurophysiology, 2015, 32, 194-206.	1.7	67
11	Interictal spikes, fast ripples and seizures in partial epilepsies – combining multiâ€level computational models with experimental data. European Journal of Neuroscience, 2012, 36, 2164-2177.	2.6	61
12	Decreased integration of EEG source-space networks in disorders of consciousness. NeuroImage: Clinical, 2019, 23, 101841.	2.7	52
13	Analysis of Intracerebral EEG Recordings of Epileptic Spikes: Insights From a Neural Network Model. IEEE Transactions on Biomedical Engineering, 2009, 56, 2782-2795.	4.2	50
14	Shape features of epileptic spikes are a marker of epileptogenesis in mice. Epilepsia, 2013, 54, 2219-2227.	5.1	43
15	Differential Calcium-Dependent Modulation of NMDA Currents in CA1 and CA3 Hippocampal Pyramidal Cells. Journal of Neuroscience, 2004, 24, 350-355.	3.6	41
16	COALIA: A Computational Model of Human EEG for Consciousness Research. Frontiers in Systems Neuroscience, 2019, 13, 59.	2.5	40
17	Muscarinic receptor stimulation reduces NMDA responses in CA3 hippocampal pyramidal cells via Ca-dependent activation of tyrosine phosphatase. Neuropharmacology, 2005, 49, 328-337.	4.1	36
18	KCNT1 epilepsy with migrating focal seizures shows a temporal sequence with poor outcome, high mortality and SUDEP. Brain, 2019, 142, 2996-3008.	7.6	35

#	Article	IF	CITATIONS
19	Neuron to Astrocyte Communication via Cannabinoid Receptors Is Necessary for Sustained Epileptiform Activity in Rat Hippocampus. PLoS ONE, 2012, 7, e37320.	2.5	34
20	Physiological effects of low-magnitude electric fields on brain activity: Advances from inÂvitro, inÂvivo and in silico models. Current Opinion in Biomedical Engineering, 2018, 8, 38-44.	3.4	33
21	ï‰-AgalVA–Sensitive (P/Q-type) and –Resistant (R-type) High-Voltage–Activated Ba2+ Currents in Embryonic Cockroach Brain Neurons. Journal of Neurophysiology, 1999, 82, 2284-2293.	1.8	25
22	Differential Involvement of Ca2+ Channels in Survival and Neurite Outgrowth of Cultured Embryonic Cockroach Brain Neurons. Journal of Neurophysiology, 2002, 88, 1475-1490.	1.8	20
23	A New Computational Model for Neuro-Glio-Vascular Coupling: Astrocyte Activation Can Explain Cerebral Blood Flow Nonlinear Response to Interictal Events. PLoS ONE, 2016, 11, e0147292.	2.5	20
24	On the origin of epileptic High Frequency Oscillations observed on clinical electrodes. Clinical Neurophysiology, 2018, 129, 829-841.	1.5	20
25	Decoding the circuitry of consciousness: From local microcircuits to brain-scale networks. Network Neuroscience, 2020, 4, 315-337.	2.6	18
26	Quantitative analysis and <scp>EEG</scp> markers of <scp>KCNT</scp> 1 epilepsy of infancy with migrating focal seizures. Epilepsia, 2019, 60, 20-32.	5.1	13
27	Dynamics of task-related electrophysiological networks: a benchmarking study. Neurolmage, 2021, 231, 117829.	4.2	12
28	Modelling acute and lasting effects of tDCS on epileptic activity. Journal of Computational Neuroscience, 2020, 48, 161-176.	1.0	11
29	Model-guided control of hippocampal discharges by local direct current stimulation. Scientific Reports, 2017, 7, 1708.	3.3	10
30	Properties and development of calcium currents in embryonic cockroach neurons. Neuroscience Letters, 2000, 294, 49-52.	2.1	8
31	Energy deprivation transiently enhances rhythmic inhibitory events in the CA3 hippocampal network in vitro. Neuroscience, 2010, 168, 605-612.	2.3	6
32	In silico model reveals the key role of GABA in KCNT1 â€epilepsy in infancy with migrating focal seizures. Epilepsia, 2021, 62, 683-697.	5.1	6
33	In vitro development of P- and R-like calcium currents in insect (Periplaneta americana) embryonic brain neurons. Neuroscience Letters, 2004, 365, 228-232.	2.1	5
34	Spatio-temporal dynamics of large-scale electrophysiological networks during cognitive action control in healthy controls and Parkinson's disease patients. NeuroImage, 2022, 258, 119331.	4.2	5
35	Long term evolution of fast ripples during epileptogenesis. Journal of Neural Engineering, 2021, 18, 046027.	3.5	4
36	Reconstruction of post-synaptic potentials by reverse modeling of local field potentials. Journal of Neural Engineering, 2019, 16, 026023.	3.5	3

#	Article	lF	CITATIONS
37	Time-domain features of epileptic spikes as potential bio-markers of the epileptogenesis process. , 2010, 2010, 6007-10.		2
38	Expression, Regulation, and Potential Functions of Aromatase in Radial Glial Cells of the Fish Brain., $2012, 115-137$.		2
39	Low-intensity Local Direct Current modulates interictal discharges in mTLE: Computational and experimental insights. , 2015, , .		1
40	The move: When neurosciences teach us to better teach neurosciences. Journal of the Neurological Sciences, 2018, 391, 149-150.	0.6	1
41	Estimating the dominant frequency of High Frequency Oscillations in depth-EEG signals. , 2017, , .		O
42	Detecting transient brain states of functional connectivity: A comparative study. , 2019, , .		0