
Jack Sullivan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7284342/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Performance-Based Selection of Likelihood Models for Phylogeny Estimation. Systematic Biology, 2003, 52, 674-683.	5.6	386
2	Model Selection in Phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 445-466.	8.3	349
3	Are Guinea Pigs Rodents? The Importance of Adequate Models in Molecular Phylogenetics. Journal of Mammalian Evolution, 1997, 4, 77-86.	1.8	266

Phylogeography and Molecular Systematics of the Peromyscus Aztecus Species Group (Rodentia:) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 $\frac{236}{236}$

5	INVESTIGATING THE EVOLUTIONARY HISTORY OF THE PACIFIC NORTHWEST MESIC FOREST ECOSYSTEM: HYPOTHESIS TESTING WITHIN A COMPARATIVE PHYLOGEOGRAPHIC FRAMEWORK. Evolution; International Journal of Organic Evolution, 2005, 59, 1639-1652.	2.3	183
6	Comparative Phylogeography of Mesoamerican Highland Rodents: Concerted versus Independent Response to Past Climatic Fluctuations. American Naturalist, 2000, 155, 755-768.	2.1	180
7	Evolution of the Mitochondrial Cytochrome Oxidase II Gene in Collembola. Journal of Molecular Evolution, 1997, 44, 145-158.	1.8	177
8	Should We Use Model-Based Methods for Phylogenetic Inference When We Know That Assumptions About Among-Site Rate Variation and Nucleotide Substitution Pattern Are Violated?. Systematic Biology, 2001, 50, 723-729.	5.6	170
9	INVESTIGATING THE EVOLUTIONARY HISTORY OF THE PACIFIC NORTHWEST MESIC FOREST ECOSYSTEM: HYPOTHESIS TESTING WITHIN A COMPARATIVE PHYLOGEOGRAPHIC FRAMEWORK. Evolution; International Journal of Organic Evolution, 2005, 59, 1639.	2.3	170
10	Ancient hybridization and mitochondrial capture between two species of chipmunks. Molecular Ecology, 2008, 17, 1313-1327.	3.9	162
11	The complete nuclear estrogen receptor family in the rainbow trout: Discovery of the novel ERα2 and both ERβ isoforms. Gene, 2007, 392, 164-173.	2.2	149
12	PHYLOGEOGRAPHY OF THE TAILED FROG (ASCAPHUS TRUEI): IMPLICATIONS FOR THE BIOGEOGRAPHY OF THE PACIFIC NORTHWEST. Evolution; International Journal of Organic Evolution, 2001, 55, 147-160.	2.3	140
13	Evaluating the Performance of a Successive-Approximations Approach to Parameter Optimization in Maximum-Likelihood Phylogeny Estimation. Molecular Biology and Evolution, 2005, 22, 1386-1392.	8.9	115
14	Does Choice in Model Selection Affect Maximum Likelihood Analysis?. Systematic Biology, 2008, 57, 76-85.	5.6	108
15	Predicting plant conservation priorities on a global scale. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13027-13032.	7.1	92
16	The effect of topology on estimates of among-site rate variation. Journal of Molecular Evolution, 1996, 42, 308-312.	1.8	87
17	Testing Nested Phylogenetic and Phylogeographic Hypotheses in the Plethodon vandykei Species Group. Systematic Biology, 2004, 53, 781-792.	5.6	85
18	PHYLOGEOGRAPHY AND INTROGRESSIVE HYBRIDIZATION: CHIPMUNKS (GENUS TAMIAS) IN THE NORTHERN ROCKY MOUNTAINS. Evolution; International Journal of Organic Evolution, 2003, 57, 1900-1916.	2.3	76

JACK SULLIVAN

#	Article	IF	CITATIONS
19	Accounting for Uncertainty in the Tree Topology Has Little Effect on the Decision-Theoretic Approach to Model Selection in Phylogeny Estimation. Molecular Biology and Evolution, 2005, 22, 691-703.	8.9	68
20	Inferring the Evolutionary History of IncP-1 Plasmids Despite Incongruence among Backbone Gene Trees. Molecular Biology and Evolution, 2013, 30, 154-166.	8.9	63
21	Extensive mtDNA variation within the yellow-pine chipmunk, Tamias amoenus (Rodentia: Sciuridae), and phylogeographic inferences for northwest North America. Molecular Phylogenetics and Evolution, 2003, 26, 389-408.	2.7	62
22	Model selection as a tool for phylogeographic inference: an example from the willow <i><scp>S</scp>alix melanopsis</i> . Molecular Ecology, 2013, 22, 4014-4028.	3.9	58
23	Phylogeography of the red-tailed chipmunk (Tamias ruficaudus), a northern Rocky Mountain endemic. Molecular Ecology, 2001, 10, 2683-2695.	3.9	57
24	Phylogeny Estimation of the Radiation of Western North American Chipmunks (Tamias) in the Face of Introgression Using Reproductive Protein Genes. Systematic Biology, 2012, 61, 44.	5.6	55
25	Demographic model selection using random forests and the site frequency spectrum. Molecular Ecology, 2017, 26, 4562-4573.	3.9	49
26	Testing hypotheses of speciation timing in Dicamptodon copei and Dicamptodon aterrimus (Caudata:) Tj ETQq0 (0	Overlock 10 48
27	A multi-compartmented glacial refugium in the northern Rocky Mountains: Evidence from the phylogeography of Cardamine constancei (Brassicaceae). Conservation Genetics, 2006, 6, 895-904.	1.5	48
28	Assessment of Substitution Model Adequacy Using Frequentist and Bayesian Methods. Molecular Biology and Evolution, 2010, 27, 2790-2803.	8.9	45
29	Identifying cryptic diversity with predictive phylogeography. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161529.	2.6	45
30	Assessment of gene flow across a hybrid zone in redâ€ŧailed chipmunks (<i>Tamias ruficaudus</i>). Molecular Ecology, 2009, 18, 3097-3109.	3.9	42
31	Investigating the evolutionary history of the Pacific Northwest mesic forest ecosystem: hypothesis testing within a comparative phylogeographic framework. Evolution; International Journal of Organic Evolution, 2005, 59, 1639-52.	2.3	36
32	Phylogeography of Peromyscus furvus (Rodentia; Muridae) based on cytochrome b sequence data. Molecular Ecology, 2000, 9, 2129-2135.	3.9	34
33	ALLOZYME AND MITOCHONDRIAL DNA VARIATION IN THE TAILED FROG (ANURA: ASCAPHUS): THE INFLUENCE OF GEOGRAPHY AND GENE FLOW. Herpetologica, 2006, 62, 235-258.	0.4	23

34	Maximum-Likelihood Methods for Phylogeny Estimation. Methods in Enzymology, 2005, 395, 757-779.	1.0	22
35	No evidence for phylosymbiosis in western chipmunk species. FEMS Microbiology Ecology, 2020, 96, .	2.7	22
36	Diversification, Introgression, and Rampant Cytonuclear Discordance in Rocky Mountains Chipmunks (Sciuridae: <i>Tamias</i>). Systematic Biology, 2021, 70, 908-921.	5.6	20

JACK SULLIVAN

#	Article	IF	CITATIONS
37	Introgression at differentially aged hybrid zones in red-tailed chipmunks. Genetica, 2010, 138, 869-883.	1.1	15
38	Examination of nuclear loci across a zone of mitochondrial introgression between Tamias ruficaudus and T. amoenus. Journal of Mammalogy, 2010, 91, 1389-1400.	1.3	14
39	Species limits and integrated taxonomy of the Idaho ground squirrel (<i>Urocitellus brunneus</i>): genetic and ecological differentiation. Journal of Mammalogy, 2012, 93, 589-604.	1.3	13
40	Comparative Phylogenomic Assessment of Mitochondrial Introgression among Several Species of Chipmunks (TAMIAS). Genome Biology and Evolution, 2016, 9, evw254.	2.5	12
41	Genetic Structure across Broad Spatial and Temporal Scales: Rocky Mountain Tailed Frogs (Ascaphus) Tj ETQq1 I	1 0,78431 2.4	4 rgBT /Ov∉r
42	Integrating life history traits into predictive phylogeography. Molecular Ecology, 2019, 28, 2062-2073.	3.9	11
43	Testing for the presence of cryptic diversity in tail-dropper slugs (Prophysaon) using molecular data. Biological Journal of the Linnean Society, 2018, 124, 518-532.	1.6	10
44	Complex interplay of ancient vicariance and recent patterns of geographical speciation in north-western North American temperate rainforests explains the phylogeny of jumping slugs (Hemphillia spp.). Biological Journal of the Linnean Society, 2019, 127, 876-889.	1.6	10
45	Combining allele frequency and treeâ€based approaches improves phylogeographic inference from natural history collections. Molecular Ecology, 2018, 27, 1012-1024.	3.9	9
46	Approximating Model Probabilities in Bayesian Information Criterion and Decision-Theoretic Approaches to Model Selection in Phylogenetics. Molecular Biology and Evolution, 2011, 28, 343-349.	8.9	8
47	Carnivore Contact: A Species Fracture Zone Delineated Amongst Genetically Structured North American Marten Populations (Martes americana and Martes caurina). Frontiers in Genetics, 2020, 11, 735.	2.3	8
48	Genomic evidence of an ancient inland temperate rainforest in the Pacific Northwest of North America. Molecular Ecology, 2022, , .	3.9	4
49	The role of multiple Pleistocene refugia in promoting diversification in the Pacific Northwest. Molecular Ecology, 2022, 31, 4402-4416.	3.9	4
50	Effects of parameter estimation on maximum-likelihood bootstrap analysis. Molecular Phylogenetics and Evolution, 2010, 56, 642-648.	2.7	2
51	GENETIC STRUCTURE NOT DETECTED IN NORTHERN IDAHO AND NORTHEAST WASHINGTON WESTERN TOAD (ANAXYRUS BOREAS) POPULATIONS. , 2021, 102, .		2
52	Comparative phylogeography of two Northern Rocky Mountain endemics: the widespread Anguispira kochi occidentalis and the narrow-range Anguispira nimapuna (Gastropoda: Discidae). Biological Journal of the Linnean Society, 2021, 133, 817-834.	1.6	2
53	Genomic resolution of cryptic species diversity in chipmunks. Evolution; International Journal of Organic Evolution, 2022, 76, 2004-2019.	2.3	2
54	Genomic Resources for the North American Water Vole (Microtus richardsoni) and the Montane Vole (Microtus montanus). GigaByte, 0, 2021, 1-13.	0.0	1