Martin H Groschup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7283615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 2019, 164, 1949-1965.	2.1	285
2	Different Outcomes of Experimental Hepatitis E Virus Infection in Diverse Mouse Strains, Wistar Rats, and Rabbits. Viruses, 2019, 11, 1.	3.3	200
3	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
4	Highly Bovine Spongiform Encephalopathy–Sensitive Transgenic Mice Confirm the Essential Restriction of Infectivity to the Nervous System in Clinically Diseased Cattle. Journal of Infectious Diseases, 2005, 192, 934-942.	4.0	163
5	Generation of Monoclonal Antibodies against Human Prion Proteins in PrPO/O Mice. Molecular Medicine, 1996, 2, 725-734.	4.4	157
6	European Surveillance for West Nile Virus in Mosquito Populations. International Journal of Environmental Research and Public Health, 2013, 10, 4869-4895.	2.6	149
7	Isolation of Usutu Virus in Germany. American Journal of Tropical Medicine and Hygiene, 2011, 85, 551-553.	1.4	142
8	Susceptibility of Raccoon Dogs for Experimental SARS-CoV-2 Infection. Emerging Infectious Diseases, 2020, 26, 2982-2985.	4.3	142
9	Seroprevalence study in forestry workers from eastern Germany using novel genotype 3- and rat hepatitis E virus-specific immunoglobulin G ELISAs. Medical Microbiology and Immunology, 2012, 201, 189-200.	4.8	131
10	Epizootic Emergence of Usutu Virus in Wild and Captive Birds in Germany. PLoS ONE, 2012, 7, e32604.	2.5	129
11	Prions spread via the autonomic nervous system from the gut to the central nervous system in cattle incubating bovine spongiform encephalopathy. Journal of General Virology, 2007, 88, 1048-1055.	2.9	122
12	West Nile virus epizootic in Germany, 2018. Antiviral Research, 2019, 162, 39-43.	4.1	117
13	Widespread activity of multiple lineages of Usutu virus, western Europe, 2016. Eurosurveillance, 2017, 22, .	7.0	115
14	Taxonomy of the order Bunyavirales: second update 2018. Archives of Virology, 2019, 164, 927-941.	2.1	115
15	The impact of Crimean-Congo hemorrhagic fever virus on public health. Antiviral Research, 2013, 98, 248-260.	4.1	108
16	Reconstruction of the Evolutionary History and Dispersal of Usutu Virus, a Neglected Emerging Arbovirus in Europe and Africa. MBio, 2016, 7, e01938-15.	4.1	105
17	Polyclonal Anti-PrP Auto-antibodies Induced with Dimeric PrP Interfere Efficiently with PrPSc Propagation in Prion-infected Cells. Journal of Biological Chemistry, 2003, 278, 18524-18531.	3.4	99
18	Preclinical Detection of Variant CJD and BSE Prions in Blood. PLoS Pathogens, 2014, 10, e1004202.	4.7	95

#	Article	IF	CITATIONS
19	Differences in Proteinase K Resistance and Neuronal Deposition of Abnormal Prion Proteins Characterize Bovine Spongiform Encephalopathy (BSE) and Scrapie Strains. Molecular Medicine, 1999, 5, 406-418.	4.4	94
20	Molecular Identification of Small Mammal Species Using Novel Cytochrome b Gene-Derived Degenerated Primers. Biochemical Genetics, 2012, 50, 440-447.	1.7	94
21	Two New Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction Assays with Unique Target Sites for the Specific and Sensitive Detection of Lineages 1 and 2 <i>West Nile Virus</i> Strains. Journal of Veterinary Diagnostic Investigation, 2010, 22, 748-753.	1.1	93
22	West Nile Virus Epidemic in Germany Triggered by Epizootic Emergence, 2019. Viruses, 2020, 12, 448.	3.3	85
23	Evidence for West Nile Virus and Usutu Virus Infections in Wild and Resident Birds in Germany, 2017 and 2018. Viruses, 2019, 11, 674.	3.3	81
24	All Clinically-Relevant Blood Components Transmit Prion Disease following a Single Blood Transfusion: A Sheep Model of vCJD. PLoS ONE, 2011, 6, e23169.	2.5	80
25	Natural and experimental hepatitis E virus genotype 3 - infection in European wild boar is transmissible to domestic pigs. Veterinary Research, 2014, 45, 121.	3.0	75
26	Spread of Classic BSE Prions from the Gut via the Peripheral Nervous System to the Brain. American Journal of Pathology, 2012, 181, 515-524.	3.8	67
27	Epidemic Spread of Usutu Virus in Southwest Germany in 2011 to 2013 and Monitoring of Wild Birds for Usutu and West Nile Viruses. Vector-Borne and Zoonotic Diseases, 2015, 15, 481-488.	1.5	65
28	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
29	West Nile Virus Monitoring of Migratory and Resident Birds in Germany. Vector-Borne and Zoonotic Diseases, 2010, 10, 639-647.	1.5	61
30	Pathogenesis of West Nile virus lineage 1 and 2 in experimentally infected large falcons. Veterinary Microbiology, 2013, 161, 263-273.	1.9	61
31	Detection of rat hepatitis E virus in wild Norway rats (Rattus norvegicus) and Black rats (Rattus) Tj ETQq1 1 0.78	4314 rgBT 1.9	/Qyerlock 1(
32	Hepatitis E Virus Genotype 3 Diversity: Phylogenetic Analysis and Presence of Subtype 3b in Wild Boar in Europe. Viruses, 2015, 7, 2704-2726.	3.3	59
33	A novel double-antigen sandwich ELISA for the species-independent detection of Crimean-Congo hemorrhagic fever virus-specific antibodies. Antiviral Research, 2018, 151, 24-26.	4.1	59
34	Seroprevalence study in forestry workers of a non-endemic region in eastern Germany reveals infections by Tula and Dobrava–Belgrade hantaviruses. Medical Microbiology and Immunology, 2011, 200, 263-268.	4.8	58
35	Detection of Usutu, Sindbis, and Batai Viruses in Mosquitoes (Diptera: Culicidae) Collected in Germany, 2011–2016. Viruses, 2018, 10, 389.	3.3	51
36	West Nile Virus and Usutu Virus Monitoring of Wild Birds in Germany. International Journal of Environmental Research and Public Health, 2018, 15, 171.	2.6	51

#	Article	IF	CITATIONS
37	Pitfalls in SARS oVâ€2 PCR diagnostics. Transboundary and Emerging Diseases, 2021, 68, 253-257.	3.0	50
38	West Nile Virus Monitoring in Migrating and Resident Water Birds in Iran: Are Common Coots the Main Reservoirs of the Virus in Wetlands?. Vector-Borne and Zoonotic Diseases, 2011, 11, 1377-1381.	1.5	49
39	Evidence for an independent third Usutu virus introduction into Germany. Veterinary Microbiology, 2016, 192, 60-66.	1.9	47
40	BSE infectivity in jejunum, ileum and ileocaecal junction of incubating cattle. Veterinary Research, 2011, 42, 21.	3.0	46
41	Emerging Mosquito-Borne Threats and the Response from European and Eastern Mediterranean Countries. International Journal of Environmental Research and Public Health, 2018, 15, 2775.	2.6	45
42	BSE infectivity in the absence of detectable PrPSc accumulation in the tongue and nasal mucosa of terminally diseased cattle. Journal of General Virology, 2011, 92, 467-476.	2.9	44
43	Circulation of Crimean-Congo Hemorrhagic Fever Virus in the Former Yugoslav Republic of Macedonia Revealed by Screening of Cattle Sera Using a Novel Enzyme-linked Immunosorbent Assay. PLoS Neglected Tropical Diseases, 2015, 9, e0003519.	3.0	43
44	Sheep and goats as indicator animals for the circulation of CCHFV in the environment. Experimental and Applied Acarology, 2016, 68, 337-346.	1.6	42
45	Immunological characterization of abnormal prion protein from atypical scrapie cases in sheep using a panel of monoclonal antibodies. Journal of General Virology, 2006, 87, 3715-3722.	2.9	41
46	Outbreak and Cocirculation of Three Different Usutu Virus Strains in Eastern Germany. Vector-Borne and Zoonotic Diseases, 2017, 17, 662-664.	1.5	40
47	West Nile Virus Mosquito Vectors (Diptera: Culicidae) in Germany. Viruses, 2020, 12, 493.	3.3	40
48	Amino acid sequence and prion strain specific effects on the in vitro and in vivo convertibility of ovine/murine and bovine/murine prion protein chimeras. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 704-713.	3.8	39
49	Emergence of two Usutu virus lineages in Culex pipiens mosquitoes in the Camargue, France, 2015. Infection, Genetics and Evolution, 2018, 61, 151-154.	2.3	39
50	Chronically infected wild boar can transmit genotype 3 hepatitis E virus to domestic pigs. Veterinary Microbiology, 2015, 180, 15-21.	1.9	36
51	Characterization of atypical scrapie cases from Great Britain in transgenic ovine PrP mice. Journal of General Virology, 2010, 91, 2132-2138.	2.9	35
52	Phylogenetic analysis of Puumala virus subtype Bavaria, characterization and diagnostic use of its recombinant nucleocapsid protein. Virus Genes, 2011, 43, 177-191.	1.6	35
53	Seroepidemiological study in a Puumala virus outbreak area in South-East Germany. Medical Microbiology and Immunology, 2009, 198, 83-91.	4.8	34
54	Detection of PrPSc in peripheral tissues of clinically affected cattle after oral challenge with bovine spongiform encephalopathy. Journal of General Virology, 2012, 93, 2740-2748.	2.9	34

#	Article	IF	CITATIONS
55	A Novel Pan- <i>Flavivirus</i> Detection and Identification Assay Based on RT-qPCR and Microarray. BioMed Research International, 2017, 2017, 1-12.	1.9	34
56	Indirect ELISA based on Hendra and Nipah virus proteins for the detection of henipavirus specific antibodies in pigs. PLoS ONE, 2018, 13, e0194385.	2.5	31
57	Curing Cats with Feline Infectious Peritonitis with an Oral Multi-Component Drug Containing GS-441524. Viruses, 2021, 13, 2228.	3.3	31
58	Biochemical and immunohistochemical characterization of feline spongiform encephalopathy in a German captive cheetah. Journal of General Virology, 2010, 91, 2874-2883.	2.9	30
59	Integrins modulate the infection efficiency of West Nile virus into cells. Journal of General Virology, 2013, 94, 1723-1733.	2.9	30
60	Crimean ongo haemorrhagic fever virus in ticks collected from livestock in Balochistan, Pakistan. Transboundary and Emerging Diseases, 2020, 67, 1543-1552.	3.0	28
61	West Nile Virus Lineage 2 Vector Competence of Indigenous Culex and Aedes Mosquitoes from Germany at Temperate Climate Conditions. Viruses, 2020, 12, 561.	3.3	28
62	Crimean–Congo Hemorrhagic Fever Virus in Bulgaria and Turkey. Vector-Borne and Zoonotic Diseases, 2016, 16, 619-623.	1.5	27
63	Coâ€infections: Simultaneous detections of West Nile virus and Usutu virus in birds from Germany. Transboundary and Emerging Diseases, 2022, 69, 776-792.	3.0	26
64	Use of Competition ELISA for Monitoring of West Nile Virus Infections in Horses in Germany. International Journal of Environmental Research and Public Health, 2013, 10, 3112-3120.	2.6	25
65	Spread of West Nile Virus and Usutu Virus in the German Bird Population, 2019–2020. Microorganisms, 2022, 10, 807.	3.6	25
66	Isolation of Sindbis Virus from a Hooded Crow in Germany. Vector-Borne and Zoonotic Diseases, 2014, 14, 220-222.	1.5	24
67	Limited efficacy of West Nile virus vaccines in large falcons (Falco spp.). Veterinary Research, 2014, 45, 41.	3.0	24
68	Ngari Virus in Goats during Rift Valley Fever Outbreak, Mauritania, 2010. Emerging Infectious Diseases, 2014, 20, 2174-2176.	4.3	23
69	Hepatitis E virus in feral rabbits along a rural-urban transect in Central Germany. Infection, Genetics and Evolution, 2018, 61, 155-159.	2.3	23
70	Detection of SARS-CoV-2 variant B.1.1.7 in a cat in Germany. Research in Veterinary Science, 2021, 140, 229-232.	1.9	23
71	Henipaviruses at the Interface Between Bats, Livestock and Human Population in Africa. Vector-Borne and Zoonotic Diseases, 2019, 19, 455-465.	1.5	22
72	Characterization of goat prions demonstrates geographical variation of scrapie strains in Europe and reveals the composite nature of prion strains. Scientific Reports, 2020, 10, 19.	3.3	22

#	Article	IF	CITATIONS
73	Crimean-Congo Hemorrhagic Fever Virus-Specific Antibody Detection in Cattle in Mauritania. Vector-Borne and Zoonotic Diseases, 2017, 17, 582-587.	1.5	21
74	Evidence for enzootic circulation of Rift Valley fever virus among livestock in Cameroon. Acta Tropica, 2017, 172, 7-13.	2.0	21
75	Serosurvey of Crimean–Congo Hemorrhagic Fever Virus in Cattle, Mali, West Africa. American Journal of Tropical Medicine and Hygiene, 2017, 96, 1341-1345.	1.4	21
76	Serological Evidence for the Circulation of Ebolaviruses in Pigs From Sierra Leone. Journal of Infectious Diseases, 2018, 218, S305-S311.	4.0	20
77	Crimean-Congo hemorrhagic fever virus antibody prevalence in Mauritanian livestock (cattle, goats,) Tj ETQq1 1	0.784314 3.0	rgBT /Overlo
78	Sentinel birds in wild-bird resting sites as potential indicators for West Nile virus infections in Germany. Archives of Virology, 2010, 155, 965-969.	2.1	19
79	A one-step multiplex real-time RT-PCR for the universal detection of all currently known CCHFV genotypes. Journal of Virological Methods, 2018, 255, 38-43.	2.1	19
80	German Culex pipiens biotype molestus and Culex torrentium are vector-competent for Usutu virus. Parasites and Vectors, 2020, 13, 625.	2.5	18
81	Synergistic and strain-specific effects of bovine spongiform encephalopathy and scrapie prions in the cell-free conversion of recombinant prion protein. Journal of General Virology, 2006, 87, 3753-3761.	2.9	17
82	A competitive ELISA for species-independent detection of Crimean-Congo hemorrhagic fever virus specific antibodies. Antiviral Research, 2016, 134, 161-166.	4.1	17
83	Epidemiological investigations of Crimean-Congo haemorrhagic fever virus infection in sheep and goats in Balochistan, Pakistan. Ticks and Tick-borne Diseases, 2020, 11, 101324.	2.7	17
84	Vaccine Efficacy of Self-Assembled Multimeric Protein Scaffold Particles Displaying the Glycoprotein Gn Head Domain of Rift Valley Fever Virus. Vaccines, 2021, 9, 301.	4.4	17
85	Hepatitis E virus persists in the ejaculate of chronically infected men. Journal of Hepatology, 2021, 75, 55-63.	3.7	17
86	Red deer reveal spatial risks of Crimean ongo haemorrhagic fever virus infection. Transboundary and Emerging Diseases, 2022, 69, .	3.0	17
87	Surveillance of Batai Virus in Bovines from Germany. Vaccine Journal, 2015, 22, 672-673.	3.1	16
88	Sindbis virus- a wild bird associated zoonotic arbovirus circulates in Germany. Veterinary Microbiology, 2019, 239, 108453.	1.9	16
89	Mechanisms of inter-epidemic maintenance of Rift Valley fever phlebovirus. Antiviral Research, 2020, 174, 104692.	4.1	15
90	Epidemiological investigation of Crimean-Congo haemorrhagic fever virus infection among the one-humped camels (Camelus dromedarius) in southern Tunisia. Ticks and Tick-borne Diseases, 2021, 12, 101601.	2.7	15

#	Article	IF	CITATIONS
91	Generation and application of monoclonal antibodies against Rift Valley fever virus nucleocapsid protein NP and glycoproteins Gn and Gc. Archives of Virology, 2014, 159, 535-546.	2.1	14
92	Seroepidemiological Survey of West Nile Virus Infections in Horses from Berlin/Brandenburg and North Rhine-Westphalia, Germany. Viruses, 2022, 14, 243.	3.3	14
93	Productive Propagation of Rift Valley Fever Phlebovirus Vaccine Strain MP-12 in Rousettus aegyptiacus Fruit Bats. Viruses, 2018, 10, 681.	3.3	13
94	High sensitivity of domestic pigs to intravenous infection with HEV. BMC Veterinary Research, 2018, 14, 381.	1.9	13
95	A broadly cross-reactive monoclonal antibody against hepatitis E virus capsid antigen. Applied Microbiology and Biotechnology, 2021, 105, 4957-4973.	3.6	13
96	West Nile Virus Antibody Prevalence in Horses of Ukraine. Viruses, 2013, 5, 2469-2482.	3.3	12
97	Serosurvey for Crimean-Congo hemorrhagic fever virus infections in ruminants in Katanga province, Democratic Republic of the Congo. Ticks and Tick-borne Diseases, 2017, 8, 858-861.	2.7	12
98	Co-circulation of Crimean-Congo Hemorrhagic Fever virus strains Asia 1 and 2 between the border of Iran and Pakistan. Heliyon, 2017, 3, e00439.	3.2	12
99	Two monoclonal antibodies against glycoprotein Gn protect mice from Rift Valley Fever challenge by cooperative effects. PLoS Neglected Tropical Diseases, 2020, 14, e0008143.	3.0	12
100	Preclinical transmission of prions by blood transfusion is influenced by donor genotype and route of infection. PLoS Pathogens, 2021, 17, e1009276.	4.7	12
101	Detection of Crimean-Congo hemorrhagic fever virus in blood-fed Hyalomma ticks collected from Mauritanian livestock. Parasites and Vectors, 2021, 14, 342.	2.5	12
102	Genetic, histochemical and biochemical studies on goat TSE cases from Cyprus. Veterinary Research, 2016, 47, 99.	3.0	11
103	Four types of scrapie in goats differentiated from each other and bovine spongiform encephalopathy by biochemical methods. Veterinary Research, 2019, 50, 97.	3.0	11
104	Strengthening the Interaction of the Virology Community with the International Committee on Taxonomy of Viruses (ICTV) by Linking Virus Names and Their Abbreviations to Virus Species. Systematic Biology, 2019, 68, 828-839.	5.6	11
105	A Medicinal Herb Scutellaria lateriflora Inhibits PrP Replication in vitro and Delays the Onset of Prion Disease in Mice. Frontiers in Psychiatry, 2012, 3, 9.	2.6	10
106	High seroprevalence for Crimean–Congo haemorrhagic fever virus in ruminants in the absence of reported human cases in many regions of Bulgaria. Experimental and Applied Acarology, 2018, 75, 227-234.	1.6	10
107	Spatial-Temporal Dynamics of Hepatitis E Virus Infection in Foxes (Vulpes vulpes) in Federal State of Brandenburg, Germany, 1993–2012. Frontiers in Microbiology, 2020, 11, 115.	3.5	10
108	Mosquito survey in Mauritania: Detection of Rift Valley fever virus and dengue virus and the determination of feeding patterns. PLoS Neglected Tropical Diseases, 2022, 16, e0010203.	3.0	10

#	Article	IF	CITATIONS
109	Seroprevalence and Risk Factors for Equine West Nile Virus Infections in Eastern Germany, 2020. Viruses, 2022, 14, 1191.	3.3	10
110	Piperazine derivatives inhibit PrP/PrPres propagation in vitro and in vivo. Biochemical and Biophysical Research Communications, 2014, 445, 23-29.	2.1	9
111	Detection of PrPBSE and prion infectivity in the ileal Peyer's patch of young calves as early as 2Âmonths after oral challenge with classical bovine spongiform encephalopathy. Veterinary Research, 2017, 48, 88.	3.0	9
112	Seroprevalence and Associated Risk Factors of Rift Valley Fever in Domestic Small Ruminants in the North Region of Cameroon. Veterinary Medicine International, 2019, 2019, 1-8.	1.5	9
113	Serological evidence of exposure to ebolaviruses in domestic pigs from Guinea. Transboundary and Emerging Diseases, 2020, 67, 724-732.	3.0	9
114	Pathogenicity of West Nile Virus Lineage 1 to German Poultry. Vaccines, 2020, 8, 507.	4.4	9
115	Molecular discrimination of Hyalomma tick species serving as reservoirs and vectors for Crimean-Congo hemorrhagic fever virus in sub-Saharan Africa. Ticks and Tick-borne Diseases, 2020, 11, 101382.	2.7	9
116	A Quantitative Real-Time RT-PCR Assay for the Detection of <i>Venezuelan equine encephalitis virus</i> Utilizing a Universal Alphavirus Control RNA. BioMed Research International, 2016, 2016, 1-7.	1.9	8
117	Deciphering the BSE-type specific cell and tissue tropisms of atypical (H and L) and classical BSE. Prion, 2019, 13, 160-172.	1.8	8
118	Sheep and Cattle Are Not Susceptible to Experimental Inoculation with Hazara Orthonairovirus, a Tick-Borne Arbovirus Closely Related to CCHFV. Microorganisms, 2020, 8, 1927.	3.6	8
119	Experimental Challenge of Sheep and Cattle with Dugbe Orthonairovirus, a Neglected African Arbovirus Distantly Related to CCHFV. Viruses, 2021, 13, 372.	3.3	8
120	Diagnosis and Pathogenesis of Nairobi Sheep Disease Orthonairovirus Infections in Sheep and Cattle. Viruses, 2021, 13, 1250.	3.3	8
121	Co-Circulation of Different Hepatitis E Virus Genotype 3 Subtypes in Pigs and Wild Boar in North-East Germany, 2019. Pathogens, 2022, 11, 773.	2.8	8
122	Complementary studies detecting classical bovine spongiform encephalopathy infectivity in jejunum, ileum and ileocaecal junction in incubating cattle. Veterinary Research, 2013, 44, 123.	3.0	7
123	Seroprevalance of Batai virus in ruminants from East Germany. Veterinary Microbiology, 2018, 227, 97-102.	1.9	7
124	Competency of Amphibians and Reptiles and Their Potential Role as Reservoir Hosts for Rift Valley Fever Virus. Viruses, 2020, 12, 1206.	3.3	7
125	Cross-Reaction or Co-Infection? Serological Discrimination of Antibodies Directed against Dugbe and Crimean-Congo Hemorrhagic Fever Orthonairovirus in Nigerian Cattle. Viruses, 2021, 13, 1398.	3.3	7

Molecular detection of dugbe orthonairovirus in cattle and their infesting ticks (Amblyomma and) Tj ETQq0 0 0 rgBJ Overlock 10 Tf 50

#	Article	IF	CITATIONS
127	Real-Time Quaking-Induced Conversion Detection of Bovine Spongiform Encephalopathy Prions in a Subclinical Steer. Frontiers in Veterinary Science, 2018, 4, 242.	2.2	6
128	Development of monoclonal antibodies to Rift Valley Fever Virus and their application in antigen detection and indirect immunofluorescence. Journal of Immunological Methods, 2018, 460, 36-44.	1.4	6
129	Henipavirus-like particles induce a CD8 T cell response in C57BL/6 mice. Veterinary Microbiology, 2019, 237, 108405.	1.9	6
130	Co-infection of pigs with Hepatitis E and porcine circovirus 2, Saxony 2016. Research in Veterinary Science, 2019, 123, 35-38.	1.9	6
131	A Putative Novel Hepatitis E Virus Genotype 3 Subtype Identified in Rabbit, Germany 2016. Viruses, 2021, 13, 1065.	3.3	6
132	Deciphering Antibody Responses to Orthonairoviruses in Ruminants. Microorganisms, 2021, 9, 1493.	3.6	6
133	Presence of antibodies to Crimean Congo haemorrhagic fever virus in sheep in Tunisia, North Africa. Veterinary Medicine and Science, 2021, 7, 2323-2329.	1.6	6
134	NSG-Mice Reveal the Importance of a Functional Innate and Adaptive Immune Response to Overcome RVFV Infection. Viruses, 2022, 14, 350.	3.3	6
135	Antibody ratios against NS1 antigens of tickâ€borne encephalitis and West Nile viruses support differential flavivirus serology in dogs. Transboundary and Emerging Diseases, 0, , .	3.0	6
136	Serological and Molecular Investigation of Batai Virus Infections in Ruminants from the State of Saxony-Anhalt, Germany, 2018. Viruses, 2021, 13, 370.	3.3	5
137	αVβ3 Integrin Expression Is Essential for Replication of Mosquito and Tick-Borne Flaviviruses in Murine Fibroblast Cells. Viruses, 2022, 14, 18.	3.3	5
138	Co-circulation of Orthobunyaviruses and Rift Valley Fever Virus in Mauritania, 2015. Frontiers in Microbiology, 2021, 12, 766977.	3.5	5
139	Comparison of Crimean-Congo Hemorrhagic Fever Virus and Aigai Virus in Life Cycle Modeling Systems Reveals a Difference in L Protein Activity. Journal of Virology, 2022, 96, .	3.4	5
140	Revisiting the genetic diversity of emerging hantaviruses circulating in Europe using a pan-viral resequencing microarray. Scientific Reports, 2019, 9, 12404.	3.3	4
141	Importance of Endocytosis for the Biological Activity of Cedar Virus Fusion Protein. Cells, 2020, 9, 2054.	4.1	4
142	Diversity and Abundance of Potential Vectors of Rift Valley Fever Virus in the North Region of Cameroon. Insects, 2020, 11, 814.	2.2	4
143	Mixtures of prion substrains in natural scrapie cases revealed by ovinised murine models. Scientific Reports, 2020, 10, 5042.	3.3	4
144	Vaccination with Prion Peptide-Displaying Polyomavirus-Like Particles Prolongs Incubation Time in Scrapie-Infected Mice. Viruses, 2021, 13, 811.	3.3	4

#	Article	IF	CITATIONS
145	Replication of Rift Valley Fever Virus in Amphibian and Reptile-Derived Cell Lines. Pathogens, 2021, 10, 681.	2.8	4
146	Black rats (Rattus rattus) as potential reservoir hosts for Rift Valley fever phlebovirus: Experimental infection results in viral replication and shedding without clinical manifestation. Transboundary and Emerging Diseases, 2021, , .	3.0	4
147	Seroprevalence of Rift Valley Fever Virus Antibodies in Cattle in Mali, 2005–2014. American Journal of Tropical Medicine and Hygiene, 2018, 98, 872-874.	1.4	4
148	Pathogenesis of West Nile Virus Lineage 2 in Domestic Geese after Experimental Infection. Viruses, 2022, 14, 1319.	3.3	4
149	Hepatitis <scp>E</scp> virus: Efficacy of pasteurization of plasmaâ€derived <scp>VWF</scp> / <scp>FVIII</scp> concentrate determined by pig bioassay. Transfusion, 2021, 61, 1266-1277.	1.6	3
150	A Modular Hepatitis E Virus Replicon System for Studies on the Role of ORF1-Encoded Polyprotein Domains. Pathogens, 2022, 11, 355.	2.8	3
151	Role of ducks in the transmission cycle of tickâ€borne encephalitis virus?. Transboundary and Emerging Diseases, 2021, 68, 499-508.	3.0	2
152	Stability of BSE infectivity towards heat treatment even after proteolytic removal of prion protein. Veterinary Research, 2021, 52, 59.	3.0	2
153	Prion Infectivity and PrPBSE in the Peripheral and Central Nervous System of Cattle 8 Months Post Oral BSE Challenge. International Journal of Molecular Sciences, 2021, 22, 11310.	4.1	2
154	Strain Typing of Classical Scrapie and Bovine Spongiform Encephalopathy (BSE) by Using Ovine PrP (ARQ/ARQ) Overexpressing Transgenic Mice. International Journal of Molecular Sciences, 2022, 23, 6744.	4.1	2
155	Low levels of classical BSE infectivity in rendered fat tissue. Veterinary Research, 2018, 49, 122.	3.0	1
156	Ebola Virus Neutralizing Antibodies in Dogs from Sierra Leone, 2017. Emerging Infectious Diseases, 2020, 26, 760-763.	4.3	1
157	Absence of classical and atypical (H- and L-) BSE infectivity in the blood of bovines in the clinical end stage of disease as confirmed by intraspecies blood transfusion. Journal of General Virology, 2021, 102, .	2.9	1
158	Circulation of Nor98 Atypical Scrapie in Portuguese Sheep Confirmed by Transmission of Isolates into Transgenic Ovine ARQ-PrP Mice. International Journal of Molecular Sciences, 2021, 22, 10441.	4.1	1
159	Bovine adapted transmissible mink encephalopathy is similar to L-BSE after passage through sheep with the VRQ/VRQ genotype but not VRQ/ARQ. BMC Veterinary Research, 2020, 16, 383. 	1.9	0