Hai-Qiang Mai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7283139/publications.pdf

Version: 2024-02-01

109321 91884 5,831 144 35 69 citations g-index h-index papers 149 149 149 4293 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis. Lancet Oncology, The, 2015, 16, 645-655.	10.7	593
2	Concurrent Chemoradiotherapy vs Radiotherapy Alone in Stage II Nasopharyngeal Carcinoma: Phase III Randomized Trial. Journal of the National Cancer Institute, 2011, 103, 1761-1770.	6.3	286
3	Establishment and Validation of Prognostic Nomograms for Endemic Nasopharyngeal Carcinoma. Journal of the National Cancer Institute, 2016, 108, djv291.	6.3	281
4	What Is the Best Treatment of Locally Advanced Nasopharyngeal Carcinoma? An Individual Patient Data Network Meta-Analysis. Journal of Clinical Oncology, 2017, 35, 498-505.	1.6	263
5	Long-Term Survival After Cisplatin-Based Induction Chemotherapy and Radiotherapy for Nasopharyngeal Carcinoma: A Pooled Data Analysis of Two Phase III Trials. Journal of Clinical Oncology, 2005, 23, 1118-1124.	1.6	227
6	Neoadjuvant chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: A phase III multicentre randomised controlled trial. European Journal of Cancer, 2017, 75, 14-23.	2.8	226
7	Toripalimab or placebo plus chemotherapy as first-line treatment in advanced nasopharyngeal carcinoma: a multicenter randomized phase 3 trial. Nature Medicine, 2021, 27, 1536-1543.	30.7	197
8	Prospective Study of Tailoring Whole-Body Dual-Modality [¹⁸ F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography With Plasma Epstein-Barr Virus DNA for Detecting Distant Metastasis in Endemic Nasopharyngeal Carcinoma at Initial Staging. Journal of Clinical Oncology, 2013, 31, 2861-2869.	1.6	171
9	Induction chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: long-term results of a phase III multicentre randomised controlled trial. European Journal of Cancer, 2019, 119, 87-96.	2.8	150
10	Efficacy and Safety of Locoregional Radiotherapy With Chemotherapy vs Chemotherapy Alone in De Novo Metastatic Nasopharyngeal Carcinoma. JAMA Oncology, 2020, 6, 1345.	7.1	137
11	The Chinese Society of Clinical Oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma. Cancer Communications, 2021, 41, 1195-1227.	9.2	128
12	Concurrent chemoradiotherapy with nedaplatin versus cisplatin in stage II–IVB nasopharyngeal carcinoma: an open-label, non-inferiority, randomised phase 3 trial. Lancet Oncology, The, 2018, 19, 461-473.	10.7	118
13	Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma. Cell Research, 2020, 30, 950-965.	12.0	111
14	The Prognostic Value of Plasma Epstein-Barr Viral DNA and Tumor Response to Neoadjuvant Chemotherapy in Advanced-Stage Nasopharyngeal Carcinoma. International Journal of Radiation Oncology Biology Physics, 2015, 93, 862-869.	0.8	110
15	Locoregional radiotherapy in patients with distant metastases of nasopharyngeal carcinoma at diagnosis. Chinese Journal of Cancer, 2013, 32, 604-613.	4.9	109
16	Tumour heterogeneity and intercellular networks of nasopharyngeal carcinoma at single cell resolution. Nature Communications, 2021, 12, 741.	12.8	104
17	A new prognostic histopathologic classification of nasopharyngeal carcinoma. Chinese Journal of Cancer, 2016, 35, 41.	4.9	83
18	STING signaling remodels the tumor microenvironment by antagonizing myeloid-derived suppressor cell expansion. Cell Death and Differentiation, 2019, 26, 2314-2328.	11.2	81

#	Article	IF	CITATIONS
19	Genome-Wide Identification of a Methylation Gene Panel as a Prognostic Biomarker in Nasopharyngeal Carcinoma. Molecular Cancer Therapeutics, 2015, 14, 2864-2873.	4.1	80
20	Establishment and validation of M1 stage subdivisions for de novo metastatic nasopharyngeal carcinoma to better predict prognosis and guide treatment. European Journal of Cancer, 2017, 77, 117-126.	2.8	80
21	The Association Between the Development of Radiation Therapy, Image Technology, and Chemotherapy, and the Survival of Patients With Nasopharyngeal Carcinoma: A Cohort Study From 1990 to 2012. International Journal of Radiation Oncology Biology Physics, 2019, 105, 581-590.	0.8	80
22	Tumor CTLA-4 overexpression predicts poor survival in patients with nasopharyngeal carcinoma. Oncotarget, 2016, 7, 13060-13068.	1.8	80
23	A randomized trial of induction chemotherapy plus concurrent chemoradiotherapy versus induction chemotherapy plus radiotherapy for locoregionally advanced nasopharyngeal carcinoma. Oral Oncology, 2012, 48, 1038-1044.	1.5	65
24	Phase I trial of adoptively transferred tumor-infiltrating lymphocyte immunotherapy following concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma. Oncolmmunology, 2015, 4, e976507.	4.6	61
25	Salvage endoscopic nasopharyngectomy and intensityâ€modulated radiotherapy versus conventional radiotherapy in treating locally recurrent nasopharyngeal carcinoma. Head and Neck, 2015, 37, 1108-1115.	2.0	59
26	The Prognostic Value of Treatment-Related Lymphopenia in Nasopharyngeal Carcinoma Patients. Cancer Research and Treatment, 2018, 50, 19-29.	3.0	56
27	Galectin-9 promotes a suppressive microenvironment in human cancer by enhancing STING degradation. Oncogenesis, 2020, 9, 65.	4.9	52
28	SPINK6 Promotes Metastasis of Nasopharyngeal Carcinoma via Binding and Activation of Epithelial Growth Factor Receptor. Cancer Research, 2017, 77, 579-589.	0.9	47
29	The <i>RARS–MAD1L1</i> Fusion Gene Induces Cancer Stem Cell–like Properties and Therapeutic Resistance in Nasopharyngeal Carcinoma. Clinical Cancer Research, 2018, 24, 659-673.	7.0	47
30	Elevated peripheral blood lymphocyte-to-monocyte ratio predicts a favorable prognosis in the patients with metastatic nasopharyngeal carcinoma. Chinese Journal of Cancer, 2015, 34, 237-46.	4.9	44
31	Optimal cumulative cisplatin dose in nasopharyngeal carcinoma patients based on induction chemotherapy response. Radiotherapy and Oncology, 2019, 137, 83-94.	0.6	44
32	Ten-year outcomes of a randomised trial for locoregionally advanced nasopharyngeal carcinoma: A single-institution experience from an endemic area. European Journal of Cancer, 2015, 51, 1760-1770.	2.8	43
33	High-Sensitivity C-Reactive Protein Complements Plasma Epstein-Barr Virus Deoxyribonucleic Acid Prognostication in Nasopharyngeal Carcinoma: A Large-Scale Retrospective and Prospective Cohort Study. International Journal of Radiation Oncology Biology Physics, 2015, 91, 325-336.	0.8	41
34	Ten-year outcomes of survival and toxicity for a phase III randomised trial of concurrent chemoradiotherapy versus radiotherapy alone in stage II nasopharyngeal carcinoma. European Journal of Cancer, 2019, 110, 24-31.	2.8	40
35	Combination of Tumor Volume and Epstein-Barr Virus DNA Improved Prognostic Stratification of Stage II Nasopharyngeal Carcinoma in the Intensity Modulated Radiotherapy Era: A Large-Scale Cohort Study. Cancer Research and Treatment, 2018, 50, 861-871.	3.0	38
36	Plasma Epstein-Barr viral DNA complements TNM classification of nasopharyngeal carcinoma in the era of intensity-modulated radiotherapy. Oncotarget, 2016, 7, 6221-6230.	1.8	37

#	Article	IF	CITATIONS
37	New surgical staging system for patients with recurrent nasopharyngeal carcinoma based on the AJCC/UICC rTNM classification system. European Journal of Cancer, 2015, 51, 1771-1779.	2.8	36
38	Identifying optimal candidates for local treatment of the primary tumor among patients with de novo metastatic nasopharyngeal carcinoma: a retrospective cohort study based on Epstein–Barr virus DNA level and tumor response to palliative chemotherapy. BMC Cancer, 2019, 19, 92.	2.6	33
39	High-density lipoprotein cholesterol as a predictor of poor survival in patients with nasopharyngeal carcinoma. Oncotarget, 2016, 7, 42978-42987.	1.8	32
40	Elevated plasma big ET-1 is associated with distant failure in patients with advanced-stage nasopharyngeal carcinoma. Cancer, 2006, 106, 1548-1553.	4.1	31
41	Comparison of Long-Term Survival and Toxicity of Cisplatin Delivered Weekly versus Every Three Weeks Concurrently with Intensity-Modulated Radiotherapy in Nasopharyngeal Carcinoma. PLoS ONE, 2014, 9, e110765.	2.5	31
42	Elevated levels of plasma D-dimer predict a worse outcome in patients with nasopharyngeal carcinoma. BMC Cancer, 2014, 14, 583.	2.6	29
43	Prognostic Value of Plasma Epstein–Barr Virus DNA for Local and Regionally Advanced Nasopharyngeal Carcinoma Treated With Cisplatin-Based Concurrent Chemoradiotherapy in Intensity-Modulated Radiotherapy Era. Medicine (United States), 2016, 95, e2642.	1.0	29
44	Concurrent chemoradiotherapy with or without cetuximab for stage II to IVb nasopharyngeal carcinoma: a case–control study. BMC Cancer, 2017, 17, 567.	2.6	29
45	Is Hemoglobin Level in Patients with Nasopharyngeal Carcinoma Still a Significant Prognostic Factor in the Era of Intensity-Modulated Radiotherapy Technology?. PLoS ONE, 2015, 10, e0136033.	2.5	28
46	Expression of ERCC1 predicts clinical outcome in locoregionally advanced nasopharyngeal carcinoma treated with cisplatin-based induction chemotherapy. Oral Oncology, 2012, 48, 964-968.	1.5	27
47	Different Prognostic Values of Plasma Epstein-Barr Virus DNA and Maximal Standardized Uptake Value of 18F-FDG PET/CT for Nasopharyngeal Carcinoma Patients with Recurrence. PLoS ONE, 2015, 10, e0122756.	2.5	27
48	CDC42-interacting protein 4 promotes metastasis of nasopharyngeal carcinoma by mediating invadopodia formation and activating EGFR signaling. Journal of Experimental and Clinical Cancer Research, 2017, 36, 21.	8.6	26
49	Proposal for a new risk classification system for nasopharyngeal carcinoma patients with post-radiation nasopharyngeal necrosis. Oral Oncology, 2017, 67, 83-88.	1.5	26
50	Development and validation of the immune signature to predict distant metastasis in patients with nasopharyngeal carcinoma., 2020, 8, e000205.		26
51	Deintensified Chemoradiotherapy for Pretreatment Epstein-Barr Virus DNA-Selected Low-Risk Locoregionally Advanced Nasopharyngeal Carcinoma: A Phase II Randomized Noninferiority Trial. Journal of Clinical Oncology, 2022, 40, 1163-1173.	1.6	25
52	Prognostic implications of dynamic serum lactate dehydrogenase assessments in nasopharyngeal carcinoma patients treated with intensity-modulated radiotherapy. Scientific Reports, 2016, 6, 22326.	3.3	24
53	FMNL1 mediates nasopharyngeal carcinoma cell aggressiveness by epigenetically upregulating MTA1. Oncogene, 2018, 37, 6243-6258.	5.9	24
54	The diagnostic and prognostic values of plasma Epsteinâ€Barr virus DNA for residual cervical lymphadenopathy in nasopharyngeal carcinoma patients: a retrospective study. Cancer Communications, 2019, 39, 1-13.	9.2	24

#	Article	IF	CITATIONS
55	Advances in pathogenesis and precision medicine for nasopharyngeal carcinoma. MedComm, 2021, 2, 175-206.	7.2	24
56	Construction of a comprehensive nutritional index and its correlation with quality of life and survival in patients with nasopharyngeal carcinoma undergoing IMRT: A prospective study. Oral Oncology, 2019, 98, 62-68.	1.5	23
57	Combining pretreatment plasma Epsteinâ€Barr virus DNA level and cervical node necrosis improves prognostic stratification in patients with nasopharyngeal carcinoma: A cohort study. Cancer Medicine, 2019, 8, 6841-6852.	2.8	22
58	Effect of Induction Chemotherapy With Paclitaxel, Cisplatin, and Capecitabine vs Cisplatin and Fluorouracil on Failure-Free Survival for Patients With Stage IVA to IVB Nasopharyngeal Carcinoma. JAMA Oncology, 2022, 8, 706.	7.1	22
59	The impact of the cumulative dose of cisplatin during concurrent chemoradiotherapy on the clinical outcomes of patients with advanced-stage nasopharyngeal carcinoma in an era of intensity-modulated radiotherapy. BMC Cancer, 2015, 15, 977.	2.6	21
60	Elevated High-Sensitivity C-Reactive Protein Levels Predict Decreased Survival for Nasopharyngeal Carcinoma Patients in the Intensity-Modulated Radiotherapy Era. PLoS ONE, 2015, 10, e0122965.	2.5	21
61	A curativeâ€intent endoscopic surgery for postradiation nasopharyngeal necrosis in patients with nasopharyngeal carcinoma. Cancer Communications, 2018, 38, 1-11.	9.2	21
62	Establishment of an innovative staging system for extramedullary plasmacytoma. BMC Cancer, 2016, 16, 777.	2.6	20
63	Beneficial effects of anti-EGFR agents, Cetuximab or Nimotuzumab, in combination with concurrent chemoradiotherapy in advanced nasopharyngeal carcinoma. Oral Oncology, 2018, 80, 1-8.	1.5	20
64	Surgery for isolated regional failure in nasopharyngeal carcinoma after radiation: Selective or comprehensive neck dissection. Laryngoscope, 2019, 129, 387-395.	2.0	20
65	Therapeutic targeting of the endothelin a receptor in human nasopharyngeal carcinoma. Cancer Science, 2006, 97, 1388-1395.	3.9	19
66	Targeting the IRAK1â€"S100A9 Axis Overcomes Resistance to Paclitaxel in Nasopharyngeal Carcinoma. Cancer Research, 2021, 81, 1413-1425.	0.9	19
67	Concurrent chemoradiotherapy with 3-weekly versus weekly cisplatin in patients with locoregionally advanced nasopharyngeal carcinoma: A phase 3 multicentre randomised controlled trial (ChiCTR-TRC-12001979) Journal of Clinical Oncology, 2017, 35, 6006-6006.	1.6	19
68	Induction Chemotherapy Plus Concurrent Chemoradiotherapy Versus Concurrent Chemoradiotherapy Alone in Locoregionally Advanced Nasopharyngeal Carcinoma in Children and Adolescents: A Matched Cohort Analysis. Cancer Research and Treatment, 2018, 50, 1304-1315.	3.0	19
69	Efficacy of controlled-release oxycodone for reducing pain due to oral mucositis in nasopharyngeal carcinoma patients treated with concurrent chemoradiotherapy: a prospective clinical trial. Supportive Care in Cancer, 2019, 27, 3759-3767.	2.2	18
70	Subdivision of Nasopharyngeal Carcinoma Patients with Bone-Only Metastasis at Diagnosis for Prediction of Survival and Treatment Guidance. Cancer Research and Treatment, 2019, 51, 1259-1268.	3.0	18
71	Expression of EIF5A2 associates with poor survival of nasopharyngeal carcinoma patients treated with induction chemotherapy. BMC Cancer, 2016, 16, 669.	2.6	17
72	With or without reirradiation in advanced local recurrent nasopharyngeal carcinoma: a case–control study. BMC Cancer, 2016, 16, 774.	2.6	17

#	Article	IF	Citations
73	Effect of local treatment for metastasis and its sequence with chemotherapy on prognosis of post-treatment metastatic nasopharyngeal carcinoma patients. Oral Oncology, 2019, 92, 40-45.	1.5	17
74	Deep learning signatures reveal multiscale intratumor heterogeneity associated with biological functions and survival in recurrent nasopharyngeal carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2972-2982.	6.4	17
75	Endoscopic microwave coagulation therapy for early recurrent T1 nasopharyngeal carcinoma. European Journal of Cancer, 2009, 45, 1107-1110.	2.8	16
76	Endoscope-Guided Interstitial Intensity-Modulated Brachytherapy and Intracavitary Brachytherapy as Boost Radiation for Primary Early T Stage Nasopharyngeal Carcinoma. PLoS ONE, 2014, 9, e90048.	2.5	16
77	The role of capecitabine as maintenance therapy in <i>de novo</i> metastatic nasopharyngeal carcinoma: A propensity score matching study. Cancer Communications, 2020, 40, 32-42.	9.2	16
78	The impact of smoking on the clinical outcome of locoregionally advanced nasopharyngeal carcinoma after chemoradiotherapy. Radiation Oncology, 2014, 9, 246.	2.7	15
79	Induction chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in stage III-IVb nasopharyngeal carcinoma patients with Epstein-Barr virus DNA ≥4000 copies/ml: a matched study. Oncotarget, 2016, 7, 29739-29748.	1.8	15
80	A Randomized Controlled Trial Comparing Two Different Schedules for Cisplatin Treatment in Patients with Locoregionally Advanced Nasopharyngeal Cancer. Clinical Cancer Research, 2021, 27, 4186-4194.	7.0	15
81	RBFOX2/GOLIM4 Splicing Axis Activates Vesicular Transport Pathway to Promote Nasopharyngeal Carcinogenesis. Advanced Science, 2021, 8, e2004852.	11.2	15
82	Comparison of the treatment outcomes of intensity-modulated radiotherapy and two-dimensional conventional radiotherapy in nasopharyngeal carcinoma patients with parapharyngeal space extension. Radiotherapy and Oncology, 2015, 116, 167-173.	0.6	14
83	Pretreatment Serum Amyloid A and C-reactive Protein Comparing with Epstein-Barr Virus DNA as Prognostic Indicators in Patients with Nasopharyngeal Carcinoma: A Prospective Study. Cancer Research and Treatment, 2018, 50, 701-711.	3.0	14
84	LOX expression in primary nasopharyngeal carcinoma: correlation with prognostic parameters and outcome. Oncotarget, 2016, 7, 8200-8207.	1.8	14
85	Liposomal paclitaxel versus docetaxel in induction chemotherapy using Taxanes, cisplatin and 5-fluorouracil for locally advanced nasopharyngeal carcinoma. BMC Cancer, 2018, 18, 1279.	2.6	13
86	Pretreatment quality of life as a predictor of survival for patients with nasopharyngeal carcinoma treated with IMRT. BMC Cancer, 2018, 18, 114.	2.6	13
87	<p>The development of a nomogram to predict post-radiation necrosis in nasopharyngeal carcinoma patients: a large-scale cohort study</p> . Cancer Management and Research, 2019, Volume 11, 6253-6263.	1.9	13
88	Establishment and validation of a nomogram for predicting survival in patients with de novo metastatic nasopharyngeal carcinoma. Oral Oncology, 2019, 94, 73-79.	1.5	12
89	Establishment and validation of a nomogram for predicting the benefit of concurrent chemotherapy in stage II nasopharyngeal carcinoma: A study based on a phase III randomized clinical trial with 10-year follow-up. Oral Oncology, 2020, 100, 104490.	1.5	12
90	Genetic Variations in Radiation and Chemotherapy Drug Action Pathways and Survival in locoregionally Advanced Nasopharyngeal Carcinoma Treated with Chemoradiotherapy. PLoS ONE, 2013, 8, e82750.	2.5	12

#	Article	IF	CITATIONS
91	Advanced-Stage Nasopharyngeal Carcinoma: Restaging System after Neoadjuvant Chemotherapy on the Basis of MR Imaging Determines Survival. Radiology, 2017, 282, 171-181.	7.3	11
92	Patterns of Failure and Survival Trends Of 720 Patients with Stage I Nasopharyngeal Carcinoma Diagnosed from 1990-2012: A Large-scale Retrospective Cohort Study. Journal of Cancer, 2018, 9, 1308-1317.	2 . 5	11
93	The impact of Adult Comorbidity Evaluation-27 on the clinical outcome of elderly nasopharyngeal carcinoma patients treated with chemoradiotherapy or radiotherapy: a matched cohort analysis. Journal of Cancer, 2019, 10, 5614-5621.	2.5	11
94	Subdivision of de-novo metastatic nasopharyngeal carcinoma based on tumor burden and pretreatment EBV DNA for therapeutic guidance of locoregional radiotherapy. BMC Cancer, 2021, 21, 534.	2.6	11
95	Patterns of Failure and Survival Trends in 3,808 Patients with Stage II Nasopharyngeal Carcinoma Diagnosed from 1990 to 2012: A Large-Scale Retrospective Cohort Study. Cancer Research and Treatment, 2019, 51, 1449-1463.	3.0	11
96	Stratification of Candidates for Induction Chemotherapy in Stage III-IV Nasopharyngeal Carcinoma: A Large Cohort Study Based on a Comprehensive Prognostic Model. Frontiers in Oncology, 2020, 10, 255.	2.8	10
97	Establishment of a prognostic nomogram to identify optimal candidates for local treatment among patients with local recurrent nasopharyngeal carcinoma. Oral Oncology, 2020, 106, 104711.	1.5	10
98	Combining plasma Epstein-Barr virus DNA and nodal maximal standard uptake values of 18F-fluoro-2-deoxy-D-glucose positron emission tomography improved prognostic stratification to predict distant metastasis for locoregionally advanced nasopharyngeal carcinoma. Oncotarget, 2015, 6, 38296-38307.	1.8	10
99	Identifying distinct risks of treatment failure in nasopharyngeal carcinoma: A study based on the dynamic changes in peripheral blood lymphocytes, monocytes, N classification, and plasma Epsteinâ€Barr virus DNA. Head and Neck, 2021, , .	2.0	10
100	Development and validation of a transcriptomics-based gene signature to predict distant metastasis and guide induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma. European Journal of Cancer, 2022, 163, 26-34.	2.8	10
101	Functional polymorphisms of matrix metalloproteinase-9 and survival in patients with locoregionally advanced nasopharyngeal carcinoma treated with chemoradiotherapy. Medical Oncology, 2013, 30, 685.	2.5	9
102	Effect of Concurrent Chemoradiotherapy With Nedaplatin vs Cisplatin on the Long-term Outcomes of Survival and Toxic Effects Among Patients With Stage II to IVB Nasopharyngeal Carcinoma. JAMA Network Open, 2021, 4, e2138470.	5.9	9
103	Pregnancy associated nasopharyngeal carcinoma: A retrospective case-control analysis of maternal survival outcomes. Radiotherapy and Oncology, 2015, 116, 125-130.	0.6	8
104	Association between XRCC3 Thr241Met polymorphism and nasopharyngeal carcinoma risk: evidence from a large-scale case-control study and a meta-analysis. Tumor Biology, 2016, 37, 14825-14830.	1.8	8
105	Maximal standard uptake values of 18F-fluoro-2-deoxy-D-glucose positron emission tomography compared with Epstein-Barr virus DNA as prognostic indicators in de novo metastatic nasopharyngeal carcinoma patients. BMC Cancer, 2019, 19, 908.	2.6	8
106	Establishment and validation of two nomograms to predict the benefit of concurrent chemotherapy in stage Ilâ€Na nasopharyngeal carcinoma patients with different risk factors: Analysis based on a large cohort. Cancer Medicine, 2020, 9, 1661-1670.	2.8	8
107	Comparing three induction chemotherapy regimens for patients with locoregionally advanced nasopharyngeal carcinoma based on TNM stage and plasma Epstein–Barr virus DNA level. BMC Cancer, 2020, 20, 89.	2.6	8
108	Geriatric nutritional risk index as an independent prognostic factor in locally advanced nasopharyngeal carcinoma treated using radical concurrent chemoradiotherapy: a retrospective cohort study. Annals of Translational Medicine, 2021, 9, 532-532.	1.7	8

#	Article	IF	CITATIONS
109	Radiation-induced hypothyroidism in patients with nasopharyngeal carcinoma treated with intensity-modulated radiation therapy with or without chemotherapy: Development of a nomogram based on the equivalent dose. Oral Oncology, 2021, 120, 105378.	1.5	8
110	Nomogram for the prediction of primary distant metastasis of nasopharyngeal carcinoma to guide individualized application of FDG PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2586-2598.	6.4	8
111	Optimal cumulative cisplatin dose in nasopharyngeal carcinoma patients based on plasma Epstein–Barr virus DNA level after induction chemotherapy. Aging, 2020, 12, 4931-4944.	3.1	8
112	Reporting Quality of Randomized, Controlled Trials Evaluating Combined Chemoradiotherapy in Nasopharyngeal Carcinoma. International Journal of Radiation Oncology Biology Physics, 2017, 98, 170-176.	0.8	7
113	Association of <i>MCP†</i> promoter polymorphism with susceptibility to nasopharyngeal carcinoma. Journal of Cellular Biochemistry, 2019, 120, 6661-6670.	2.6	7
114	Optimizing the Treatment Pattern for De Novo Metastatic Nasopharyngeal Carcinoma Patients: A Large-Scale Retrospective Cohort Study. Frontiers in Oncology, 2020, 10, 543646.	2.8	7
115	Intensive Local Radiotherapy Is Associated With Better Local Control and Prolonged Survival in Bone-Metastatic Nasopharyngeal Carcinoma Patients. Frontiers in Oncology, 2020, 10, 378.	2.8	7
116	Construction of a comprehensive nutritional index and comparison of its prognostic performance with the PNI and NRI for survival in older patients with nasopharyngeal carcinoma: a retrospective study. Supportive Care in Cancer, 2021, 29, 5371-5381.	2.2	7
117	Impact of smoking on survival in nasopharyngeal carcinoma: A cohort study with 23,325 patients diagnosed from 1990 to 2016. Radiotherapy and Oncology, 2021, 162, 7-17.	0.6	7
118	Identification of surrogate endpoints in patients with locoregionally advanced nasopharyngeal carcinoma receiving neoadjuvant chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone. BMC Cancer, 2015, 15, 930.	2.6	6
119	Nomogram Predicting the Benefits of Adding Concurrent Chemotherapy to Intensity-Modulated Radiotherapy After Induction Chemotherapy in Stages II–IVb Nasopharyngeal Carcinoma. Frontiers in Oncology, 2020, 10, 539321.	2.8	6
120	Optimal sequencing of chemotherapy with chemoradiotherapy based on TNM stage classification and EBV DNA in locoregionally advanced nasopharyngeal carcinoma. Cancer Communications, 2019, 39, 1-3.	9.2	5
121	Low value of whole-body dual-modality [18f]fluorodeoxyglucose positron emission tomography/computed tomography in primary staging of stage l–Il nasopharyngeal carcinoma: a nest case-control study. European Radiology, 2021, 31, 5222-5233.	4.5	5
122	Increased Angiogenin Expression Correlates With Radiation Resistance and Predicts Poor Survival for Patients With Nasopharyngeal Carcinoma. Frontiers in Pharmacology, 2021, 12, 627935.	3.5	5
123	Establishment and validation of a prognostic nomogram to predict early metastasis in nasopharyngeal carcinoma patients within six months after radiotherapy and to guide intensive treatment. Radiotherapy and Oncology, 2021, 162, 202-211.	0.6	5
124	Efficacy of Transnasal Endoscopic Fineâ€Needle Aspiration Biopsy in Diagnosing Submucosal Nasopharyngeal Carcinoma. Laryngoscope, 2021, 131, 1798-1804.	2.0	4
125	Do all patients with locoregionally advanced nasopharyngeal carcinoma benefit from the maintenance chemotherapy using S-1/capecitabine?. Oral Oncology, 2021, 122, 105539.	1.5	4
126	Prognostic effect of pregnancy on young female patients with nasopharyngeal carcinoma: results from a matched cohort analysis. Oncotarget, 2016, 7, 21913-21921.	1.8	4

#	Article	IF	CITATIONS
127	Percent change in apparent diffusion coefficient and plasma EBV DNA after induction chemotherapy identifies distinct prognostic response phenotypes in advanced nasopharyngeal carcinoma. BMC Cancer, 2021, 21, 1320.	2.6	4
128	Proteomic Analysis of a Nasopharyngeal Carcinoma Cell Line and a Nasopharyngeal Epithelial Cell Line. Tumori, 2015, 101, 676-683.	1.1	3
129	The prognosis of neck residue nasopharyngeal carcinoma (NPC) patients: results from a case-cohort study. Journal of Cancer, 2018, 9, 1765-1772.	2.5	3
130	Identifying optimal candidates for induction chemotherapy among stage II–IVa nasopharyngeal carcinoma based on pretreatment Epstein–Barr virus DNA and nodal maximal standard uptake values of [18 F]â€fluorodeoxyglucose positron emission tomography. Cancer Medicine, 2020, 9, 8852-8863.	2.8	3
131	Management of suboptimal response to induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma: Re-induction therapy or direct to Radiotherapy?. Radiotherapy and Oncology, 2021, 163, 185-191.	0.6	3
132	Induction or adjuvant chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in paediatric nasopharyngeal carcinoma in the IMRT era: A recursive partitioning risk stratification analysis based on EBV DNA. European Journal of Cancer, 2021, 159, 133-143.	2.8	3
133	Establishment and validation of a recursive partitioning analysis based prognostic model for guiding re-radiotherapy in locally recurrent nasopharyngeal carcinoma patients. Radiotherapy and Oncology, 2022, 168, 61-68.	0.6	3
134	Association of Treatment Advances With Survival Rates in Pediatric Patients With Nasopharyngeal Carcinoma in China, 1989-2020. JAMA Network Open, 2022, 5, e220173.	5.9	3
135	Role of zoledronic acid in nasopharyngeal carcinoma patients with bone-only metastasis at diagnosis. Oral Oncology, 2019, 97, 31-36.	1.5	2
136	Development and validation of a normal tissue complication probability model for acquired nasal cavity stenosis and atresia after radical radiotherapy for nasopharyngeal carcinoma. Radiotherapy and Oncology, 2021, 160, 9-17.	0.6	2
137	Impact of salvage radiotherapy on survival of patients with advanced locally recurrent nasopharyngeal carcinoma: Derivation and validation of a predictive model. Radiotherapy and Oncology, 2022, 167, 252-260.	0.6	2
138	Cost-Effectiveness analysis of combining plasma Epstein-Barr virus DNA testing and different surveillance imaging modalities for nasopharyngeal carcinoma patients in first remission. Oral Oncology, 2022, 128, 105851.	1.5	2
139	Longitudinal Trend of Health-Related Quality of Life During Concurrent Chemoradiotherapy and Survival in Patients With Stage Il–IVb Nasopharyngeal Carcinoma. Frontiers in Oncology, 2020, 10, 579292.	2.8	1
140	Management of firstâ€line palliative chemotherapy for postâ€treatment metastasis after gemcitabine plus cisplatin induction chemotherapy: Gemcitabine plus cisplatin and nonâ€gemcitabine plus cisplatin chemotherapy. Head and Neck, 2022, 44, 113-121.	2.0	1
141	Definitive radiation therapy and liver local therapy in de novo liver metastatic nasopharyngeal carcinoma: Large cohort study. Head and Neck, 2022, , .	2.0	1
142	Determining the suitability of definitive radiation therapy in patients with metastatic nasopharyngeal carcinoma based on PET/CT: a large cohort study. European Radiology, 2022, , 1.	4.5	1
143	Alpha-fetoprotein–producing recurrent nasopharyngeal carcinoma: A case report. SAGE Open Medical Case Reports, 2021, 9, 2050313X2110577.	0.3	0
144	Construction and validation of a biochemical signature to predict the prognosis and the benefit of induction chemotherapy in patients with nasopharyngeal carcinoma. American Journal of Cancer Research, 2022, 12, 1635-1647.	1.4	0