Jenny Hsieh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7283084/publications.pdf

Version: 2024-02-01

147801 155660 7,117 59 31 55 h-index citations g-index papers 62 62 62 9320 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Gestational Buprenorphine Exposure Disrupts Dopamine Neuron Activity and Related Behaviors in Adulthood. ENeuro, 2022, 9, ENEURO.0499-21.2022.	1.9	5
2	A critical period of neuronal activity results in aberrant neurogenesis rewiring hippocampal circuitry in a mouse model of epilepsy. Nature Communications, 2021, 12, 1423.	12.8	46
3	SARS-CoV-2 targets glial cells in human cortical organoids. Stem Cell Reports, 2021, 16, 1156-1164.	4.8	73
4	HDAC1 Regulates Neuronal Differentiation. Frontiers in Molecular Neuroscience, 2021, 14, 815808.	2.9	5
5	Stem cells: A path towards improved epilepsy therapies. Neuropharmacology, 2020, 168, 107781.	4.1	9
6	Human Brain Organoid Models of Developmental Epilepsies. Epilepsy Currents, 2020, 20, 282-290.	0.8	17
7	Circuit Integration Initiation of New Hippocampal Neurons in the Adult Brain. Cell Reports, 2020, 30, 959-968.e3.	6.4	12
8	Role of RB1 in human embryonic stem cell-derived retinal organoids. Developmental Biology, 2020, 462, 197-207.	2.0	22
9	Novel Targets of SARS-CoV-2 Spike Protein in Human Fetal Brain Development Suggest Early Pregnancy Vulnerability. Frontiers in Neuroscience, 2020, 14, 614680.	2.8	15
10	Targeting Seizure-Induced Neurogenesis in a Clinically Relevant Time Period Leads to Transient But Not Persistent Seizure Reduction. Journal of Neuroscience, 2019, 39, 7019-7028.	3.6	24
11	Rise and Fall of the Empire: Conquering Alzheimer's Disease by Targeting Adult Neurogenesis. Epilepsy Currents, 2019, 19, 411-413.	0.8	1
12	One-Hit Wonders and 2-Hit Tubers: A Second-Hit to TSC2 Causes Tuber-Like Cells in Spheroids. Epilepsy Currents, 2019, 19, 49-50.	0.8	5
13	Charactering hESCs Organoids from Electrical Signals with Machine Learning. , 2019, , .		1
14	Genome-Wide Identification of Transcription Factor-Binding Sites in Quiescent Adult Neural Stem Cells. Methods in Molecular Biology, 2018, 1686, 265-286.	0.9	1
15	Neural stem cells and epilepsy: functional roles and disease-in-a-dish models. Cell and Tissue Research, 2018, 371, 47-54.	2.9	20
16	CHD2: One Gene, Many Roles. Neuron, 2018, 100, 1014-1016.	8.1	8
17	RB controls growth, survival, and neuronal migration in human cerebral organoids. Development (Cambridge), 2017, 144, 1025-1034.	2.5	31
18	Mice with conditional NeuroD1 knockout display reduced aberrant hippocampal neurogenesis but no change in epileptic seizures. Experimental Neurology, 2017, 293, 190-198.	4.1	31

#	Article	lF	CITATIONS
19	NEUROD1 Instructs Neuronal Conversion in Non-Reactive Astrocytes. Stem Cell Reports, 2017, 8, 1506-1515.	4.8	106
20	You Have Brains in Your Head, You Have Organoids in Your Dish, you Can Steer Yourself in any Direction you Wish. Epilepsy Currents, 2017, 17, 311-313.	0.8	8
21	Retinoblastoma protein controls growth, survival and neuronal migration in human cerebral organoids. Journal of Cell Science, 2017, 130, e1.1-e1.1.	2.0	2
22	GABAergic Interneurons-in-a-Dish: High Five for Epilepsy. Epilepsy Currents, 2016, 16, 177-178.	0.8	1
23	Heterozygous STXBP1 Mutations Associated with Ohtahara Syndrome: Two Littles Make a Lot. Epilepsy Currents, 2016, 16, 330-332.	0.8	0
24	Microglial TLR9: Guardians of Homeostatic Hippocampal Neurogenesis. Epilepsy Currents, 2016, 16, 39-40.	0.8	5
25	Deep Blue "Seq― Fishing for Epilepsy Genes. Epilepsy Currents, 2016, 16, 110-111.	0.8	0
26	Genetics and Epigenetics in Adult Neurogenesis. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018911.	5 . 5	64
27	REST regulation of gene networks in adult neural stem cells. Nature Communications, 2016, 7, 13360.	12.8	54
28	The REST remodeling complex protects genomic integrity during embryonic neurogenesis. ELife, 2016, 5, e09584.	6.0	61
29	The IncRNA Pnky in the Brain. Cell Stem Cell, 2015, 16, 344-345.	11.1	10
30	Suppression of Adult Neurogenesis Increases the Acute Effects of Kainic Acid. Experimental Neurology, 2015, 264, 135-149.	4.1	79
31	Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nature Communications, 2015, 6, 6606.	12.8	333
32	Inducible knockout of Mef2a, , and â€d from nestinâ€expressing stem/progenitor cells and their progeny unexpectedly uncouples neurogenesis and dendritogenesis <i>in vivo</i> . FASEB Journal, 2015, 29, 5059-5071.	0.5	23
33	HDAC3 controls gap 2/mitosis progression in adult neural stem/progenitor cells by regulating CDK1 levels. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13541-13546.	7.1	58
34	On Your (Methyl) Mark, Get TET1, Go!. Cell Stem Cell, 2013, 13, 133-134.	11.1	0
35	Neural Stem Cells, Excited. Science, 2013, 339, 1534-1535.	12.6	13
36	Harnessing adult neurogenesis by cracking the epigenetic code. Future Neurology, 2012, 7, 65-79.	0.5	3

#	Article	lF	CITATIONS
37	Functional and mechanistic exploration of an adult neurogenesisâ€promoting small molecule. FASEB Journal, 2012, 26, 3148-3162.	0.5	66
38	Orchestrating transcriptional control of adult neurogenesis. Genes and Development, 2012, 26, 1010-1021.	5.9	175
39	Small-molecule blocks malignant astrocyte proliferation and induces neuronal gene expression. Differentiation, 2011, 81, 233-242.	1.9	29
40	The Master Negative Regulator REST/NRSF Controls Adult Neurogenesis by Restraining the Neurogenic Program in Quiescent Stem Cells. Journal of Neuroscience, 2011, 31, 9772-9786.	3.6	230
41	Epigenetics, hippocampal neurogenesis, and neuropsychiatric disorders: Unraveling the genome to understand the mind. Neurobiology of Disease, 2010, 39, 73-84.	4.4	132
42	Notch1 Is Required for Maintenance of the Reservoir of Adult Hippocampal Stem Cells. Journal of Neuroscience, 2010, 30, 10484-10492.	3.6	266
43	MicroRNA Regulation of Neural Stem Cells and Neurogenesis: Figure 1 Journal of Neuroscience, 2010, 30, 14931-14936.	3.6	197
44	Discovery of a Proneurogenic, Neuroprotective Chemical. Cell, 2010, 142, 39-51.	28.9	304
45	Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7876-7881.	7.1	278
46	HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the β-catenin–TCF interaction. Nature Neuroscience, 2009, 12, 829-838.	14.8	517
47	Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nature Neuroscience, 2009, 12, 1097-1105.	14.8	584
48	Neurod1 is essential for the survival and maturation of adult-born neurons. Nature Neuroscience, 2009, 12, 1090-1092.	14.8	394
49	The oligodendrocyte-specific G protein–coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nature Neuroscience, 2009, 12, 1398-1406.	14.8	277
50	Small-molecule activation of neuronal cell fate. Nature Chemical Biology, 2008, 4, 408-410.	8.0	134
51	Cardiogenic small molecules that enhance myocardial repair by stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6063-6068.	7.1	114
52	Epigenetic regulation of neural cell differentiation plasticity in the adult mammalian brain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18012-18017.	7.1	79
53	Epigenetic Modulation of Seizure-Induced Neurogenesis and Cognitive Decline. Journal of Neuroscience, 2007, 27, 5967-5975.	3.6	316
54	Chromatin remodeling in neural development and plasticity. Current Opinion in Cell Biology, 2005, 17, 664-671.	5.4	198

#	Article	IF	CITATIONS
55	IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. Journal of Cell Biology, 2004, 164, 111-122.	5.2	294
56	Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16659-16664.	7.1	656
57	Epigenetic control of neural stem cell fate. Current Opinion in Genetics and Development, 2004, 14, 461-469.	3.3	204
58	A Small Modulatory dsRNA Specifies the Fate of Adult Neural Stem Cells. Cell, 2004, 116, 779-793.	28.9	428
59	Recognition and Silencing of Repeated DNA. Annual Review of Genetics, 2000, 34, 187-204.	7.6	99