Robin J M Franklin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/728294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain. Nature Neuroscience, 2022, 25, 306-316.	14.8	166
2	Remyelination in humans due to a retinoidâ€X receptor agonist is ageâ€dependent. Annals of Clinical and Translational Neurology, 2022, 9, 1090-1094.	3.7	10
3	Revisiting remyelination: Towards a consensus on the regeneration of CNS myelin. Seminars in Cell and Developmental Biology, 2021, 116, 3-9.	5.0	82
4	Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer's disease risk genes. Nature Genetics, 2021, 53, 392-402.	21.4	258
5	Neuroprotective effects of Sonic hedgehog agonist SAG in a rat model of neonatal stroke. Pediatric Research, 2021, 90, 1161-1170.	2.3	10
6	A map of transcriptional heterogeneity and regulatory variation in human microglia. Nature Genetics, 2021, 53, 861-868.	21.4	115
7	Diversity of Reactive Astrogliosis in CNS Pathology: Heterogeneity or Plasticity?. Frontiers in Cellular Neuroscience, 2021, 15, 703810.	3.7	34
8	Myc determines the functional age state of oligodendrocyte progenitor cells. Nature Aging, 2021, 1, 826-837.	11.6	12
9	Isolation of neural stem and oligodendrocyte progenitor cells from the brain of live rats. Stem Cell Reports, 2021, 16, 2534-2547.	4.8	0
10	Safety and efficacy of bexarotene in patients with relapsing-remitting multiple sclerosis (CCMR One): a randomised, double-blind, placebo-controlled, parallel-group, phase 2a study. Lancet Neurology, The, 2021, 20, 709-720.	10.2	44
11	Schwann cell remyelination of the central nervous system: why does it happen and what are the benefits?. Open Biology, 2021, 11, 200352.	3.6	29
12	Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration. Neuron, 2020, 105, 855-866.e5.	8.1	143
13	Changes in the Oligodendrocyte Progenitor Cell Proteome with Ageing. Molecular and Cellular Proteomics, 2020, 19, 1281-1302.	3.8	53
14	Enhanced axonal response of mitochondria to demyelination offers neuroprotection: implications for multiple sclerosis. Acta Neuropathologica, 2020, 140, 143-167.	7.7	48
15	The Role of Astrocytes in Remyelination. Trends in Neurosciences, 2020, 43, 596-607.	8.6	39
16	The fatty acid binding protein FABP7 is required for optimal oligodendrocyte differentiation during myelination but not during remyelination. Glia, 2020, 68, 1410-1420.	4.9	20
17	Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system. Acta Neuropathologica, 2020, 139, 893-909.	7.7	80
18	Problems and Pitfalls of Identifying Remyelination in Multiple Sclerosis. Cell Stem Cell, 2020, 26, 617-619.	11.1	21

#	Article	IF	CITATIONS
19	Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature, 2019, 573, 130-134.	27.8	311
20	Remyelination and ageing: Reversing the ravages of time. Multiple Sclerosis Journal, 2019, 25, 1835-1841.	3.0	63
21	Metformin Restores CNS Remyelination Capacity by Rejuvenating Aged Stem Cells. Cell Stem Cell, 2019, 25, 473-485.e8.	11.1	245
22	Oligodendrocyte Death in Pelizaeus-Merzbacher Disease Is Rescued by Iron Chelation. Cell Stem Cell, 2019, 25, 531-541.e6.	11.1	60
23	Aging restricts the ability of mesenchymal stem cells to promote the generation of oligodendrocytes during remyelination. Glia, 2019, 67, 1510-1525.	4.9	28
24	Transforming growth factorâ€beta renders ageing microglia inhibitory to oligodendrocyte generation by CNS progenitors. Glia, 2019, 67, 1374-1384.	4.9	32
25	Diversity in the oligodendrocyte lineage: Plasticity or heterogeneity?. Clia, 2019, 67, 1797-1805.	4.9	63
26	Pericytes Favor Oligodendrocyte Fate Choice in Adult Neural Stem Cells. Frontiers in Cellular Neuroscience, 2019, 13, 85.	3.7	19
27	Toxin-Based Models to Investigate Demyelination and Remyelination. Methods in Molecular Biology, 2019, 1936, 377-396.	0.9	24
28	The microbiota regulates murine inflammatory responses to toxin-induced CNS demyelination but has minimal impact on remyelination. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25311-25321.	7.1	29
29	Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity, 2019, 50, 253-271.e6.	14.3	1,351
30	Clinical implications of myelin regeneration in the central nervous system. Expert Review of Neurotherapeutics, 2018, 18, 111-123.	2.8	4
31	Clemastine rescues myelination defects and promotes functional recovery in hypoxic brain injury. Brain, 2018, 141, 85-98.	7.6	83
32	A Subpopulation of Foxj1-Expressing, Nonmyelinating Schwann Cells of the Peripheral Nervous System Contribute to Schwann Cell Remyelination in the Central Nervous System. Journal of Neuroscience, 2018, 38, 9228-9239.	3.6	20
33	Injury-induced perivascular niche supports alternative differentiation of adult rodent CNS progenitor cells. ELife, 2018, 7, .	6.0	27
34	Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity. ELife, 2018, 7, .	6.0	71
35	Subependymal Zone-Derived Oligodendroblasts Respond to Focal Demyelination but Fail to Generate Myelin in Young and Aged Mice. Stem Cell Reports, 2017, 8, 685-700.	4.8	40
36	Regulatory T cells promote myelin regeneration in the central nervous system. Nature Neuroscience, 2017, 20, 674-680.	14.8	343

#	Article	IF	CITATIONS
37	MRI measurements of reporter-mediated increases in transmembrane water exchange enable detection of a gene reporter. Nature Biotechnology, 2017, 35, 75-80.	17.5	63
38	Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination. Cell Reports, 2017, 20, 1755-1764.	6.4	100
39	Do Not Adjust Your Mind: The Fault Is in Your Glia. Cell Stem Cell, 2017, 21, 155-156.	11.1	1
40	Lnc <scp>RNA GAS</scp> 5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Reports, 2017, 18, 1801-1816.	4.5	173
41	Recruitment of endogenous CNS stem cells for regeneration in demyelinating disease. Progress in Brain Research, 2017, 231, 135-163.	1.4	13
42	Mechanical Strain Promotes Oligodendrocyte Differentiation by Global Changes of Gene Expression. Frontiers in Cellular Neuroscience, 2017, 11, 93.	3.7	59
43	Regenerating CNS myelin — from mechanisms to experimental medicines. Nature Reviews Neuroscience, 2017, 18, 753-769.	10.2	413
44	Efficient Remyelination Requires DNA Methylation. ENeuro, 2017, 4, ENEURO.0336-16.2017.	1.9	45
45	Electric Signals Regulate the Directional Migration of Oligodendrocyte Progenitor Cells (OPCs) via β1 Integrin. International Journal of Molecular Sciences, 2016, 17, 1948.	4.1	14
46	CNS Remyelination and the Innate Immune System. Frontiers in Cell and Developmental Biology, 2016, 4, 38.	3.7	54
47	Unexpected central role of the androgen receptor in the spontaneous regeneration of myelin. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14829-14834.	7.1	89
48	Developmental Origin of Oligodendrocyte Lineage Cells Determines Response to Demyelination and Susceptibility to Age-Associated Functional Decline. Cell Reports, 2016, 15, 761-773.	6.4	112
49	Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy. Acta Neuropathologica Communications, 2016, 4, 89.	5.2	45
50	Neuronal expression of pathological tau accelerates oligodendrocyte progenitor cell differentiation. Glia, 2016, 64, 457-471.	4.9	16
51	Antibody-mediated neutralization of myelin-associated EphrinB3 accelerates CNS remyelination. Acta Neuropathologica, 2016, 131, 281-298.	7.7	37
52	Functional Characterization of DNA Methylation in the Oligodendrocyte Lineage. Cell Reports, 2016, 15, 748-760.	6.4	81
53	Pre-Existing Mature Oligodendrocytes Do Not Contribute to Remyelination following Toxin-Induced Spinal Cord Demyelination. American Journal of Pathology, 2016, 186, 511-516.	3.8	74
54	Pioglitazone regulates myelin phagocytosis and multiple sclerosis monocytes. Annals of Clinical and Translational Neurology, 2015, 2, 1071-1084.	3.7	32

#	Article	IF	CITATIONS
55	Glia Disease and Repair—Remyelination. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020594.	5.5	171
56	Regenerative Medicines for Remyelination: From Aspiration to Reality. Cell Stem Cell, 2015, 16, 576-577.	11.1	17
57	Vitamin D receptor–retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation. Journal of Cell Biology, 2015, 211, 975-985.	5.2	118
58	Demyelination Causes Adult CNS Progenitors to Revert to an Immature State and Express Immune Cues That Support Their Migration. Journal of Neuroscience, 2015, 35, 4-20.	3.6	218
59	Astrocyte Activation via Stat3 Signaling Determines the Balance of Oligodendrocyte versus Schwann Cell Remyelination. American Journal of Pathology, 2015, 185, 2431-2440.	3.8	41
60	The Complement Receptor C5aR Controls Acute Inflammation and Astrogliosis following Spinal Cord Injury. Journal of Neuroscience, 2015, 35, 6517-6531.	3.6	90
61	Fibroblast growth factor signaling in oligodendrocyte-lineage cells facilitates recovery of chronically demyelinated lesions but is redundant in acute lesions. Glia, 2015, 63, 1714-1728.	4.9	43
62	Lesion-Induced Accumulation of Platelets Promotes Survival of Adult Neural Stem / Progenitor Cells. Experimental Neurology, 2015, 269, 75-89.	4.1	33
63	Discovery of a novel neuroprotectant, BHDPC, that protects against MPP+/MPTP-induced neuronal death in multiple experimental models. Free Radical Biology and Medicine, 2015, 89, 1057-1066.	2.9	22
64	Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination. Brain, 2015, 138, 3581-3597.	7.6	159
65	Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors. Nature Communications, 2015, 6, 8518.	12.8	223
66	Sox2 Sustains Recruitment of Oligodendrocyte Progenitor Cells following CNS Demyelination and Primes Them for Differentiation during Remyelination. Journal of Neuroscience, 2015, 35, 11482-11499.	3.6	67
67	The EIIIA domain from astrocyteâ€derived fibronectin mediates proliferation of oligodendrocyte progenitor cells following CNS demyelination. Glia, 2015, 63, 242-256.	4.9	38
68	Vitamin D receptor–retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation. Journal of Experimental Medicine, 2015, 212, 21213OIA113.	8.5	0
69	Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nature Communications, 2014, 5, 4294.	12.8	131
70	Macrophages and CNS remyelination. Journal of Neurochemistry, 2014, 130, 165-171.	3.9	160
71	The VF rat with abnormal myelinogenesis has a mutation in <scp><i>Dopey1</i></scp> . Glia, 2014, 62, 1530-1542.	4.9	11
72	Isolation and Longâ€Term Expansion of Functional, Myelinating Oligodendrocyte Progenitor Cells from Neonatal Rat Brain. Current Protocols in Stem Cell Biology, 2014, 31, 2D.17.1-15.	3.0	18

#	Article	IF	CITATIONS
73	Profilin 1 is required for peripheral nervous system myelination. Development (Cambridge), 2014, 141, 1553-1561.	2.5	51
74	Auxetic nuclei in embryonic stem cells exiting pluripotency. Nature Materials, 2014, 13, 638-644.	27.5	145
75	The translational biology of remyelination: Past, present, and future. Glia, 2014, 62, 1905-1915.	4.9	144
76	Special Issue on Stem Cells: "The End of the Beginning― Experimental Neurology, 2014, 260, 1-2.	4.1	0
77	Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nature Medicine, 2014, 20, 954-960.	30.7	451
78	Cell Therapy for Spinal Cord Injuries. Neuroscientist, 2014, 20, 623-638.	3.5	18
79	Multiple sclerosis genetics. Lancet Neurology, The, 2014, 13, 700-709.	10.2	319
80	M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nature Neuroscience, 2013, 16, 1211-1218.	14.8	1,357
81	Neurodegeneration progresses despite complete elimination of clinical relapses in a mouse model of multiple sclerosis. Acta Neuropathologica Communications, 2013, 1, 84.	5.2	26
82	Peroxisome proliferatorâ€activated receptor gammaâ€coactivatorâ€1 alpha coordinates sphingolipid metabolism, lipid raft composition and myelin protein synthesis. European Journal of Neuroscience, 2013, 38, 2672-2683.	2.6	19
83	High Yields of Oligodendrocyte Lineage Cells from Human Embryonic Stem Cells at Physiological Oxygen Tensions for Evaluation of Translational Biology. Stem Cell Reports, 2013, 1, 437-450.	4.8	83
84	Myokymia and neuromyotonia in veterinary medicine: A comparison with peripheral nerve hyperexcitability syndrome in humans. Veterinary Journal, 2013, 197, 153-162.	1.7	24
85	The late response of rat subependymal zone stem and progenitor cells to stroke is restricted to directly affected areas of their niche. Experimental Neurology, 2013, 248, 387-397.	4.1	23
86	Using Naturally Occurring Spinal Cord Injury in Domestic Dogs to Explore Novel Therapeutic Options. Neuromethods, 2013, , 185-205.	0.3	1
87	Do Your Glial Cells Make You Clever?. Cell Stem Cell, 2013, 12, 265-266.	11.1	6
88	Brain pericyte plasticity as a potential drug target in CNS repair. Drug Discovery Today, 2013, 18, 456-463.	6.4	46
89	Endogenous Remyelination in the CNS. , 2013, , 71-92.		5
90	Ageing stem and progenitor cells: implications for rejuvenation of the central nervous system. Development (Cambridge), 2013, 140, 2562-2575.	2.5	42

#	Article	IF	CITATIONS
91	Fibronectin aggregation in multiple sclerosis lesions impairs remyelination. Brain, 2013, 136, 116-131.	7.6	159
92	Neuregulin and BDNF Induce a Switch to NMDA Receptor-Dependent Myelination by Oligodendrocytes. PLoS Biology, 2013, 11, e1001743.	5.6	264
93	Neural Precursor Cells Cultured at Physiologically Relevant Oxygen Tensions Have a Survival Advantage Following Transplantation. Stem Cells Translational Medicine, 2013, 2, 464-472.	3.3	19
94	Inhibition of phosphodiesteraseâ€4 promotes oligodendrocyte precursor cell differentiation and enhances <scp>CNS</scp> remyelination. EMBO Molecular Medicine, 2013, 5, 1918-1934.	6.9	44
95	Identification of endothelin 2 as an inflammatory factor that promotes central nervous system remyelination. Brain, 2013, 136, 1035-1047.	7.6	74
96	Embryonic-Derived Olfactory Ensheathing Cells Remyelinate Focal Areas of Spinal Cord Demyelination more Efficiently than Neonatal or Adult-Derived Cells. Cell Transplantation, 2013, 22, 1249-1261.	2.5	14
97	Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of oligodendrocyte myelination. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1299-1304.	7.1	196
98	Endogeneous Remyelination: Findings in Human Studies. CNS and Neurological Disorders - Drug Targets, 2012, 11, 598-609.	1.4	31
99	Hereditary ataxia, myokymia and neuromyotonia in Jack Russell terriers. Veterinary Record, 2012, 171, 131-132.	0.3	2
100	Rejuvenation of Regeneration in the Aging Central Nervous System. Cell Stem Cell, 2012, 10, 96-103.	11.1	552
101	Neuroprotection and repair in multiple sclerosis. Nature Reviews Neurology, 2012, 8, 624-634.	10.1	235
102	Focal Immune-Mediated White Matter Demyelination Reveals an Age-Associated Increase in Axonal Vulnerability and Decreased Remyelination Efficiency. American Journal of Pathology, 2012, 180, 1897-1905.	3.8	31
103	Mechanical Environment Modulates Biological Properties of Oligodendrocyte Progenitor Cells. Stem Cells and Development, 2012, 21, 2905-2914.	2.1	105
104	Autologous olfactory mucosal cell transplants in clinical spinal cord injury: a randomized double-blinded trial in a canine translational model. Brain, 2012, 135, 3227-3237.	7.6	152
105	Accelerated Axonal Loss Following Acute CNS Demyelination in Mice Lacking Protein Tyrosine Phosphatase Receptor Type Z. American Journal of Pathology, 2012, 181, 1518-1523.	3.8	17
106	Abnormal myelinogenesis in the central nervous system of the VF mutant rat with recoverable tremor. Brain Research, 2012, 1488, 104-112.	2.2	6
107	Current status of myelin replacement therapies in multiple sclerosis. Progress in Brain Research, 2012, 201, 219-231.	1.4	22
108	Differentiation, Migration, Proliferation, and Survival of Oligodendrocyte Precursor Cells is Modulated by Mechanical Properties of their Environment. Biophysical Journal, 2012, 102, 704a.	0.5	0

#	Article	IF	CITATIONS
109	Retinoid X receptors as a potential avenue for regenerative medicine in multiple sclerosis. Expert Review of Neurotherapeutics, 2011, 11, 467-468.	2.8	10
110	Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nature Neuroscience, 2011, 14, 1009-1016.	14.8	307
111	Myelin Regeneration: A Recapitulation of Development?. Annual Review of Neuroscience, 2011, 34, 21-43.	10.7	282
112	Regenerative medicine in multiple sclerosis: Identifying pharmacological targets of adult neural stem cell differentiation. Neurochemistry International, 2011, 59, 329-32.	3.8	38
113	Retinoid X receptor gamma signaling accelerates CNS remyelination. Nature Neuroscience, 2011, 14, 45-53.	14.8	449
114	Oligodendroglial pathology in the development of myelin breakdown in the dmy mutant rat. Brain Research, 2011, 1389, 161-168.	2.2	11
115	Myelin Regeneration in Multiple Sclerosis: Targeting Endogenous Stem Cells. Neurotherapeutics, 2011, 8, 650-658.	4.4	47
116	Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis. Brain, 2011, 134, 1901-1913.	7.6	131
117	Genetically Induced Adult Oligodendrocyte Cell Death Is Associated with Poor Myelin Clearance, Reduced Remyelination, and Axonal Damage. Journal of Neuroscience, 2011, 31, 1069-1080.	3.6	124
118	Stem cell transplantation in multiple sclerosis: current status and future prospects. Nature Reviews Neurology, 2010, 6, 247-255.	10.1	175
119	Abnormal myelinogenesis both in the white and gray matter of the attractin-deficient mv rat. Brain Research, 2010, 1312, 145-155.	2.2	10
120	Abnormal iron accumulation is involved in the pathogenesis of the demyelinating dmy rat but not in the hypomyelinating mv rat. Brain Research, 2010, 1349, 105-114.	2.2	22
121	FGF but not EGF induces phosphorylation of the cAMP response element binding protein in olfactory mucosa-derived cell cultures. Experimental Cell Research, 2010, 316, 1489-1499.	2.6	3
122	Temporal dynamics of myelination in the zebrafish spinal cord. Glia, 2010, 58, 802-812.	4.9	57
123	Injury and differentiation following inhibition of mitochondrial respiratory chain complex IV in rat oligodendrocytes. Glia, 2010, 58, 1827-1837.	4.9	83
124	Oligodendrocyte <i>PTEN</i> is required for myelin and axonal integrity, not remyelination. Annals of Neurology, 2010, 68, 703-716.	5.3	148
125	Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy. Journal of Biomechanics, 2010, 43, 2986-2992.	2.1	221
126	Cell therapy clinical trial for dogs with chronic spinal cord injury. Veterinary Record, 2010, 166, 729-729.	0.3	0

#	Article	IF	CITATIONS
127	Stem cell treatments and multiple sclerosis. BMJ: British Medical Journal, 2010, 340, c1387-c1387.	2.3	12
128	Drug reprofiling using zebrafish identifies novel compounds with potential pro-myelination effects. Neuropharmacology, 2010, 59, 149-159.	4.1	74
129	CNS-Resident Glial Progenitor/Stem Cells Produce Schwann Cells as well as Oligodendrocytes during Repair of CNS Demyelination. Cell Stem Cell, 2010, 6, 578-590.	11.1	549
130	Remyelination $\hat{a} \in \mathbb{C}$ An effective means of neuroprotection. Hormones and Behavior, 2010, 57, 56-62.	2.1	54
131	Overcoming remyelination failure in multiple sclerosis and other myelin disorders. Experimental Neurology, 2010, 225, 18-23.	4.1	161
132	Transplanted Oligodendrocyte Precursor Cells Reduce Neurodegeneration in a Model of Glaucoma. , 2009, 50, 4244.		81
133	Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain, 2009, 132, 465-481.	7.6	176
134	Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes and Development, 2009, 23, 1571-1585.	5.9	537
135	Upâ€regulation of oligodendrocyte precursor cell αV integrin and its extracellular ligands during central nervous system remyelination. Journal of Neuroscience Research, 2009, 87, 3447-3455.	2.9	58
136	Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Annals of Neurology, 2009, 65, 304-315.	5.3	270
137	The biology of CNS remyelination. Journal of Neurology, 2008, 255, 19-25.	3.6	150
138	Quantification of deficits in lateral paw positioning after spinal cord injury in dogs. BMC Veterinary Research, 2008, 4, 47.	1.9	34
139	Remyelination in the CNS: from biology to therapy. Nature Reviews Neuroscience, 2008, 9, 839-855.	10.2	1,296
140	Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nature Neuroscience, 2008, 11, 1024-1034.	14.8	411
141	Secreted factors from olfactory mucosa cells expanded as free-floating spheres increase neurogenesis in olfactory bulb neurosphere cultures. BMC Neuroscience, 2008, 9, 24.	1.9	7
142	Cellular responses in the spinal cord during development of hypomyelination in the mv rat. Brain Research, 2008, 1195, 120-129.	2.2	10
143	An experimental model of secondary progressive multiple sclerosis that shows regional variation in gliosis, remyelination, axonal and neuronal loss. Journal of Neuroimmunology, 2008, 201-202, 200-211.	2.3	59
144	Osteopontin is extensively expressed by macrophages following CNS demyelination but has a redundant role in remyelination. Neurobiology of Disease, 2008, 31, 209-217.	4.4	40

#	Article	IF	CITATIONS
145	Promoting remyelination in multiple sclerosis by endogenous adult neural stem/precursor cells: Defining cellular targets. Journal of the Neurological Sciences, 2008, 265, 12-16.	0.6	27
146	Taking ageing into account in remyelination-based therapies for multiple sclerosis. Journal of the Neurological Sciences, 2008, 274, 64-67.	0.6	45
147	Zebrafish myelination: a transparent model for remyelination?. DMM Disease Models and Mechanisms, 2008, 1, 221-228.	2.4	51
148	Myelin repair: the role of stem and precursor cells in multiple sclerosis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 171-183.	4.0	42
149	Serum-free medium provides a clinically relevant method to increase olfactory ensheathing cell numbers in olfactory mucosa cell culture. Cell Transplantation, 2008, 16, 1021-7.	2.5	9
150	Essential and distinct roles for cdc42 and rac1 in the regulation of Schwann cell biology during peripheral nervous system development. Journal of Cell Biology, 2007, 177, 1051-1061.	5.2	172
151	Serum-Free Medium Provides a Clinically Relevant Method to Increase Olfactory Ensheathing Cell Numbers in Olfactory Mucosa Cell Culture. Cell Transplantation, 2007, 16, 1021-1027.	2.5	18
152	Myelin regeneration in demyelinating disorders: new developments in biology and clinical pathology. Current Opinion in Neurology, 2007, 20, 294-298.	3.6	58
153	Calponin is expressed by fibroblasts and meningeal cells but not olfactory ensheathing cells in the adult peripheral olfactory system. Glia, 2007, 55, 144-151.	4.9	32
154	The phagocytic capacity of neurones. European Journal of Neuroscience, 2007, 25, 2947-2955.	2.6	41
155	Contrasting effects of basic fibroblast growth factor and epidermal growth factor on mouse neonatal olfactory mucosa cells. European Journal of Neuroscience, 2007, 26, 3345-3357.	2.6	23
156	Development of a universal measure of quadrupedal forelimb-hindlimb coordination using digital motion capture and computerised analysis. BMC Neuroscience, 2007, 8, 77.	1.9	46
157	Mutations in genes causing human familial isolated hyperparathyroidism do not account for hyperparathyroidism in Keeshond dogs. Veterinary Journal, 2007, 174, 652-654.	1.7	13
158	Remyelination of the Central Nervous System. , 2007, , 427-443.		1
159	Myelin Impairs CNS Remyelination by Inhibiting Oligodendrocyte Precursor Cell Differentiation. Journal of Neuroscience, 2006, 26, 328-332.	3.6	626
160	Magnetic resonance imaging of functional Schwann cell transplants labelled with magnetic microspheres. NeuroImage, 2006, 31, 172-180.	4.2	37
161	Oligodendrocyte progenitor cell (OPC) transplantation is unlikely to offer a means of preventing X-irradiation induced damage in the CNS. Experimental Neurology, 2006, 198, 145-153.	4.1	21
162	Females remyelinate more efficiently than males following demyelination in the aged but not young adult CNS. Experimental Neurology, 2006, 202, 250-254.	4.1	68

#	Article	IF	CITATIONS
163	Differences in the early inflammatory responses to toxin-induced demyelination are associated with the age-related decline in CNS remyelination. Neurobiology of Aging, 2006, 27, 1298-1307.	3.1	127
164	Tyrosine kinases: maiming myelin in leprosy. Nature Medicine, 2006, 12, 889-890.	30.7	6
165	<i>Olig</i> gene function in CNS development and disease. Glia, 2006, 54, 1-10.	4.9	197
166	Inflammation stimulates myelination by transplanted oligodendrocyte precursor cells. Glia, 2006, 54, 297-303.	4.9	166
167	Corticosteroids delay remyelination of experimental demyelination in the rodent central nervous system. Journal of Neuroscience Research, 2006, 83, 594-605.	2.9	67
168	Cdc42 and Rac1 Signaling Are Both Required for and Act Synergistically in the Correct Formation of Myelin Sheaths in the CNS. Journal of Neuroscience, 2006, 26, 10110-10119.	3.6	120
169	Comparison of cell populations derived from canine olfactory bulb and olfactory mucosal cultures. American Journal of Veterinary Research, 2006, 67, 1050-1056.	0.6	22
170	Â1-Integrin Signaling Mediates Premyelinating Oligodendrocyte Survival But Is Not Required for CNS Myelination and Remyelination. Journal of Neuroscience, 2006, 26, 7665-7673.	3.6	106
171	Stem cells, progenitors and myelin repair. Journal of Anatomy, 2005, 207, 251-258.	1.5	58
172	Effects of pre- versus post-anaesthetic buprenorphine on propofol-anaesthetized rats. Veterinary Anaesthesia and Analgesia, 2005, 32, 256-260.	0.6	21
173	Minocycline-mediated inhibition of microglia activation impairs oligodendrocyte progenitor cell responses and remyelination in a non-immune model of demyelination. Journal of Neuroimmunology, 2005, 158, 58-66.	2.3	148
174	Autologous Olfactory Glial Cell Transplantation Is Reliable and Safe in Naturally Occurring Canine Spinal Cord Injury. Journal of Neurotrauma, 2005, 22, 1282-1293.	3.4	78
175	Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiology of Disease, 2005, 18, 166-175.	4.4	301
176	Enhancing Central Nervous System Remyelination in Multiple Sclerosis. Neuron, 2005, 48, 9-12.	8.1	117
177	Mechanisms of CNS remyelination—the key to therapeutic advances. Journal of the Neurological Sciences, 2005, 233, 87-91.	0.6	63
178	NEUROSCIENCE: The Mysteries of Myelin Unwrapped. Science, 2004, 304, 688-689.	12.6	30
179	Notch1 and Jagged1 are expressed after CNS demyelination, but are not a major rate-determining factor during remyelination. Brain, 2004, 127, 1928-1941.	7.6	144
180	CNS axons retain their competence for myelination throughout life. Glia, 2004, 45, 307-311.	4.9	32

#	Article	IF	CITATIONS
181	Response of olfactory ensheathing cells to the degeneration and regeneration of the peripheral olfactory system and the involvement of the neuregulins. Journal of Comparative Neurology, 2004, 470, 50-62.	1.6	70
182	bHLH Transcription Factor Olig1 Is Required to Repair Demyelinated Lesions in the CNS. Science, 2004, 306, 2111-2115.	12.6	379
183	Superparamagnetic Iron Oxide-Labeled Schwann Cells and Olfactory Ensheathing Cells Can Be Traced In Vivo by Magnetic Resonance Imaging and Retain Functional Properties after Transplantation into the CNS. Journal of Neuroscience, 2004, 24, 9799-9810.	3.6	125
184	Remyelination by Endogenous Clia. , 2004, , 173-196.		2
185	Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Molecular and Cellular Neurosciences, 2004, 25, 252-262.	2.2	276
186	Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Molecular and Cellular Neurosciences, 2004, 27, 247-254.	2.2	256
187	Olfactory Ensheathing Cells. , 2004, , 371-384.		1
188	Lentiviral vectors for gene delivery to normal and demyelinated white matter. Glia, 2003, 42, 59-67.	4.9	28
189	Remyelination by transplanted olfactory ensheathing cells. The Anatomical Record, 2003, 271B, 71-76.	1.8	68
190	Increasing local levels of neuregulin (glial growth factorâ€2) by direct infusion into areas of demyelination does not alter remyelination in the rat CNS. European Journal of Neuroscience, 2003, 18, 2253-2264.	2.6	46
191	Olfactory ensheathing cells induce less host astrocyte response and chondroitin sulphate proteoglycan expression than schwann cells following transplantation into adult cns white matter. Experimental Neurology, 2003, 184, 237-246.	4.1	182
192	Meningeal cells enhance limited CNS remyelination by transplanted olfactory ensheathing cells. Brain, 2003, 126, 598-609.	7.6	77
193	Impaired remyelination and depletion of oligodendrocyte progenitors does not occur following repeated episodes of focal demyelination in the rat central nervous system. Brain, 2003, 126, 1382-1391.	7.6	117
194	A Role for Notch Signalling in Remyelination of the Central Nervous System. Clinical Science, 2003, 104, 37P-37P.	0.0	0
195	Quantifying the Early Stages of Remyelination Following Cuprizoneâ€induced Demyelination. Brain Pathology, 2003, 13, 329-339.	4.1	186
196	Obtaining olfactory ensheathing cells from extraâ€cranial sources a step closer to clinical transplantâ€mediated repair of the CNS?. Brain, 2002, 125, 2-3.	7.6	25
197	Transplant mediated repair of the central nervous system: an imminent solution?. Current Opinion in Neurology, 2002, 15, 701-705.	3.6	25
198	Ageing and CNS remyelination. NeuroReport, 2002, 13, 923-928.	1.2	55

#	Article	IF	CITATIONS
199	Expression of the POU-Domain Transcription Factors SCIP/Oct-6 and Brn-2 Is Associated with Schwann Cell but Not Oligodendrocyte Remyelination of the CNS. Molecular and Cellular Neurosciences, 2002, 20, 669-682.	2.2	40
200	Remyelination of the demyelinated CNS: the case for and against transplantation of central, peripheral and olfactory glia. Brain Research Bulletin, 2002, 57, 827-832.	3.0	86
201	Recognition and Diagnosis of Lysosomal Storage Diseases in the Cat and Dog. Journal of Veterinary Internal Medicine, 2002, 16, 133-141.	1.6	49
202	The Age-Related Decrease in CNS Remyelination Efficiency Is Attributable to an Impairment of Both Oligodendrocyte Progenitor Recruitment and Differentiation. Journal of Neuroscience, 2002, 22, 2451-2459.	3.6	502
203	Transplant mediated repair of the central nervous system: an imminent solution?. Current Opinion in Neurology, 2002, 15, 701-705.	3.6	21
204	Why does remyelination fail in multiple sclerosis?. Nature Reviews Neuroscience, 2002, 3, 705-714.	10.2	750
205	Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia, 2001, 35, 204-212.	4.9	357
206	SpL201: A conditionally immortalized Schwann cell precursor line that generates myelin. Glia, 2001, 36, 31-47.	4.9	38
207	SCIP/Octâ€6, Kroxâ€20, and desert hedgehog mRNA expression during CNS remyelination by transplanted olfactory ensheathing cells. Glia, 2001, 36, 342-353.	4.9	51
208	Expression of dominant-negative and chimeric subunits reveals an essential role for β1 integrin during myelination. Current Biology, 2001, 11, 1039-1043.	3.9	93
209	What roles do growth factors play in CNS remyelination?. Progress in Brain Research, 2001, 132, 185-193.	1.4	26
210	Transplantation Options for Therapeutic Central Nervous System Remyelination. Cell Transplantation, 2000, 9, 289-294.	2.5	99
211	Schwann cell remyelination is restricted to astrocyte-deficient areas after transplantation into demyelinated adult rat brain. , 2000, 60, 571-578.		70
212	Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes. Glia, 2000, 32, 214-225.	4.9	271
213	Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons. Brain, 2000, 123, 1581-1588.	7.6	233
214	Robust Regeneration of CNS Axons through a Track Depleted of CNS Glia. Experimental Neurology, 2000, 161, 49-66.	4.1	57
215	Schwann Cells Transplanted into Normal and X-Irradiated Adult White Matter Do Not Migrate Extensively and Show Poor Long-Term Survival. Experimental Neurology, 2000, 164, 292-302.	4.1	83
216	Olfactory Ensheathing Cells and CNS Regeneration. Neuron, 2000, 28, 15-18.	8.1	139

#	Article	IF	CITATIONS
217	Transplanting Myelinogenic Cells into the CNS. Neuromethods, 2000, , 305-317.	0.3	1
218	Review : Remyelination—A Regenerative Process in the CNS. Neuroscientist, 1999, 5, 184-191.	3.5	12
219	Demyelination and remyelination of the caudal cerebellar peduncle of adult rats following stereotaxic injections of lysolecithin, ethidium bromide, and complement/anti-galactocerebroside: A comparative study. , 1999, 25, 216-228.		264
220	Remyelination occurs as extensively but more slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. Glia, 1999, 28, 77-83.	4.9	228
221	Magnetic resonance imaging of transplanted oligodendrocyte precursors in the rat brain. NeuroReport, 1999, 10, 3961-3965.	1.2	80
222	The expression of myelin basic protein exon 1 and exon 2 containing transcripts during myelination of the neonatal rat spinal cordan in situ hybridization study. , 1998, 27, 683-693.		18
223	Axon loss in multiple sclerosis. Lancet, The, 1998, 352, 340-341.	13.7	68
224	Transplanting Myelin-Forming Cells into the Central Nervous System: Principles and Practice. Methods, 1998, 16, 311-319.	3.8	5
225	To what extent is oligodendrocyte progenitor migration a limiting factor in the remyelination of multiple sclerosis lesions?. Multiple Sclerosis Journal, 1997, 3, 84-87.	3.0	57
226	Contrasting effects of mitogenic growth factors on oligodendrocyte precursor cell migration. Glia, 1997, 19, 85-90.	4.9	110
227	Transplanting oligodendrocyte progenitors into the adult CNS. Journal of Anatomy, 1997, 190, 23-33.	1.5	77
228	Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. , 1997, 50, 337-344.		162
229	Do olfactory glia have advantages over Schwann cells for CNS repair?. , 1997, 50, 665-672.		94
230	Do olfactory glia have advantages over Schwann cells for CNS repair?. Journal of Neuroscience Research, 1997, 50, 665-672.	2.9	5
231	The biology of the transplanted oligodendrocyte progenitor. , 1997, , 367-378.		0
232	Transplanted CG4 Cells (an Oligodendrocyte Progenitor Cell Line) Survive, Migrate, and Contribute to Repair of Areas of Demyelination in X-Irradiated and Damaged Spinal Cord but Not in Normal Spinal Cord. Experimental Neurology, 1996, 137, 263-276.	4.1	136
233	Remyelination in the CNS of the hypothyroid rat. NeuroReport, 1996, 7, 1526-1530.	1.2	11
234	Glial-cell transplantation and plasticity in the O-2A lineage — implications for CNS repair. Trends in Neurosciences, 1995, 18, 151-156.	8.6	110

#	Article	IF	CITATIONS
235	A new form of ovine G M1 -gangliosidosis. Acta Neuropathologica, 1995, 89, 374-379.	7.7	2
236	In vitroandIn vivoAnalysis of a Rat Bipotential O - 2A Progenitor Cell Line Containing the Temperature-sensitive Mutant Gene of the SV40 Large T Antigen. European Journal of Neuroscience, 1993, 5, 1247-1260.	2.6	67
237	Reconstructing myelin-deficient environments in the CNS by glial cell transplantation. Seminars in Neuroscience, 1993, 5, 443-451.	2.2	16
238	Remyelination in the CNS: from biology to therapy. , 0, .		1
239	The adult human oligodendrocyte precursor cell: a key player in myelin repair. , 0, , 53-59.		Ο