
Maurizio Renna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/728272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation of Non-Canonical Autophagic Pathway through Inhibition of Non-Integrin Laminin Receptor in Neuronal Cells. Cells, 2022, 11, 466.	4.1	3
2	IBtkα Activates the β-Catenin-Dependent Transcription of MYC through Ubiquitylation and Proteasomal Degradation of GSK3β in Cancerous B Cells. International Journal of Molecular Sciences, 2022, 23, 2044.	4.1	7
3	α-Catenin levels determine direction of YAP/TAZ response to autophagy perturbation. Nature Communications, 2021, 12, 1703.	12.8	17
4	Early onset effects of single substrate accumulation recapitulate major features of LSD in patient-derived lysosomes. IScience, 2021, 24, 102707.	4.1	11
5	Metabolites Profiling of Melanoma Interstitial Fluids Reveals Uridine Diphosphate as Potent Immune Modulator Capable of Limiting Tumor Growth. Frontiers in Cell and Developmental Biology, 2021, 9, 730726.	3.7	13
6	Protocol for labeling and fixation of intact lysosomes with esterified amino acid analogs to assess lysosomal expansion in living eukaryotic cells. STAR Protocols, 2021, 2, 100916.	1.2	5
7	PERK-Mediated Unfolded Protein Response Activation and Oxidative Stress in PARK20 Fibroblasts. Frontiers in Neuroscience, 2019, 13, 673.	2.8	38
8	Insights into Thymus Development and Viral Thymic Infections. Viruses, 2019, 11, 836.	3.3	15
9	The RAB11A-Positive Compartment Is a Primary Platform for Autophagosome Assembly Mediated by WIPI2 Recognition of PI3P-RAB11A. Developmental Cell, 2018, 45, 114-131.e8.	7.0	147
10	Revisiting Bacterial Ubiquitin Ligase Effectors: Weapons for Host Exploitation. International Journal of Molecular Sciences, 2018, 19, 3576.	4.1	12
11	Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nature Communications, 2018, 9, 2961.	12.8	193
12	Neurodegenerative Diseases and Autophagy. , 2018, , 299-343.		1
13	Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Neuron, 2017, 93, 1015-1034.	8.1	860
14	Macroautophagy without LC3 conjugation?. Cell Research, 2017, 27, 5-6.	12.0	3
15	High mobility group A1 protein modulates autophagy in cancer cells. Cell Death and Differentiation, 2017, 24, 1948-1962.	11.2	39
16	The Endoplasmic Reticulum Unfolded Protein Response in Neurodegenerative Disorders and Its Potential Therapeutic Significance. Frontiers in Molecular Neuroscience, 2017, 10, 187.	2.9	138
17	Commentary: Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Frontiers in Pharmacology, 2016, 7, 431.	3.5	5
18	CCT complex restricts neuropathogenic protein aggregation via autophagy. Nature Communications, 2016, 7, 13821.	12.8	107

Maurizio Renna

#	Article	IF	CITATIONS
19	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
20	Mammalian Autophagy: How Does It Work?. Annual Review of Biochemistry, 2016, 85, 685-713.	11.1	578
21	Functional drug screening reveals anticonvulsants as enhancers of mTORâ€independent autophagic killing of <i>Mycobacterium tuberculosis</i> through inositol depletion. EMBO Molecular Medicine, 2015, 7, 127-139.	6.9	137
22	XIAP and cIAP1 amplifications induce Beclin 1-dependent autophagy through NFκB activation. Human Molecular Genetics, 2015, 24, 2899-2913.	2.9	47
23	Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nature Communications, 2015, 6, 8045.	12.8	64
24	ATG16L1 meets ATG9 in recycling endosomes. Autophagy, 2014, 10, 182-184.	9.1	64
25	Reducing Igf-1r Levels Leads To Paradoxical and Sexually Dimorphic Effects in HD Mice. PLoS ONE, 2014, 9, e105595.	2.5	8
26	Diverse Autophagosome Membrane Sources Coalesce in Recycling Endosomes. Cell, 2013, 154, 1285-1299.	28.9	383
27	Connections between SNAREs and autophagy. Trends in Biochemical Sciences, 2013, 38, 57-63.	7.5	121
28	IGF-1 receptor antagonism inhibits autophagy. Human Molecular Genetics, 2013, 22, 4528-4544.	2.9	76
29	α-Synuclein levels modulate Huntington's disease in mice. Human Molecular Genetics, 2012, 21, 485-494.	2.9	37
30	Measurement of Autophagic Activity in Mammalian Cells. Current Protocols in Cell Biology, 2012, 54, Unit 15.16.	2.3	38
31	α-synuclein levels affect autophagosome numbers in vivo and modulate Huntington disease pathology. Autophagy, 2012, 8, 431-432.	9.1	22
32	Autophagosome Precursor Maturation Requires Homotypic Fusion. Cell, 2011, 146, 303-317.	28.9	341
33	Complex Inhibitory Effects of Nitric Oxide on Autophagy. Molecular Cell, 2011, 43, 19-32.	9.7	340
34	Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex. Journal of Cell Science, 2011, 124, 469-482.	2.0	99
35	Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection. Journal of Clinical Investigation, 2011, 121, 3554-3563.	8.2	272
36	Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease. Human Molecular Genetics, 2010, 19, 2144-2153.	2.9	191

Maurizio Renna

#	Article	IF	CITATIONS
37	Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease. Human Molecular Genetics, 2010, 19, 3413-3429.	2.9	135
38	Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain, 2010, 133, 93-104.	7.6	236
39	Chemical Inducers of Autophagy That Enhance the Clearance of Mutant Proteins in Neurodegenerative Diseases. Journal of Biological Chemistry, 2010, 285, 11061-11067.	3.4	181
40	Regulation of Mammalian Autophagy in Physiology and Pathophysiology. Physiological Reviews, 2010, 90, 1383-1435.	28.8	1,557
41	Endoplasmic reticulum stress reduces the export from the ER and alters the architecture of post-ER compartments. International Journal of Biochemistry and Cell Biology, 2009, 41, 2511-2521.	2.8	35
42	Regulation of ERGIC-53 Gene Transcription in Response to Endoplasmic Reticulum Stress*. Journal of Biological Chemistry, 2007, 282, 22499-22512.	3.4	32
43	Nitric oxide-induced endoplasmic reticulum stress activates the expression of cargo receptor proteins and alters the glycoprotein transport to the Golgi complex. International Journal of Biochemistry and Cell Biology, 2006, 38, 2040-2048.	2.8	18
44	Heat Shock Induces Preferential Translation of ERGIC-53 and Affects Its Recycling Pathway. Journal of Biological Chemistry, 2004, 279, 42535-42544.	3.4	29