Norio Tagawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7282520/publications.pdf Version: 2024-02-01

Νορίο Τλέλνιλ

#	Article	IF	CITATIONS
1	Subband compound with fundamental wave and harmonics in focus wave beamforming. Japanese Journal of Applied Physics, 2022, 61, SG1072.	1.5	2
2	One-shot beam-forming with adaptively weighted compound of multiple transmission angles and subbands. Japanese Journal of Applied Physics, 2022, 61, SG1079.	1.5	2
3	Plane wave beamforming with adaptively weighted frequency compound using bandpass filtering. Japanese Journal of Applied Physics, 2021, 60, SDDB08.	1.5	7
4	Acoustic sensing method for an occlusion area with super-directional sound sources and multiple modulation signal. Japanese Journal of Applied Physics, 2021, 60, SDDB09.	1.5	8
5	Adaptive Realization Based on One Transmission and Reception of Simultaneous Subband Compound of Harmonics. , 2021, , .		1
6	Effects of flexural vibration and thickness vibration on receiving characteristics of a diaphragm-type PZT resonator. Japanese Journal of Applied Physics, 2020, 59, SKKE10.	1.5	6
7	Optimization of Frequency and Plane- Wave Compounding by Minimum Variance Beamforming. , 2020, , .		3
8	High resolution ultrasonic imaging based on frequency sweep in both of transducer element domain and imaging line domain. Japanese Journal of Applied Physics, 2019, 58, SGGE03.	1.5	11
9	Improvement of Performance Degradation in Synthetic Aperture Extension of Enhanced Axial Resolution Ultrasound Imaging Based on Frequency Sweep. Sensors, 2019, 19, 2414.	3.8	4
10	Construction of FDMAS in Baseband and Its Performance Evaluation. , 2019, , .		3
11	Performance improvement of ultrasonic range super-resolution based on phase rotation by dealing with echo distortion. Proceedings of Meetings on Acoustics, 2019, , .	0.3	3
12	Visualization of frequency dependence of tissue characteristics by phase-contrast imaging based on ultrasonic interference method. Japanese Journal of Applied Physics, 2018, 57, 07LF20.	1.5	8
13	A Study on Structural Parameters for Optimizing Wide-Band Property of Diaphragm-Type Transducer Using Piezoelectric Thick Film. , 2018, , .		1
14	Super-Resolution Ultrasound Imaging Based on the Phase of the Carrier Wave Without Deterioration by Grating Lobes. , 2018, , .		3
15	Experimental evaluation of long-range acoustic sensing using super-directivity speaker and super-resolution signal processing with pulse compression technique. Japanese Journal of Applied Physics, 2017, 56, 07JC14.	1.5	16
16	Characteristic analysis of diaphragm-type transducer that is thick relative to its size. Japanese Journal of Applied Physics, 2017, 56, 07JD11.	1.5	7
17	Wide-band design of diaphragm pMUT based on induction of strain in thickness direction by aspect ratio control. Proceedings of Meetings on Acoustics, 2017, , .	0.3	1
18	Restoration of scatterer distribution based on Empirical Bayesian learning with consideration of statistical properties. Proceedings of Meetings on Acoustics, 2017, , .	0.3	2

Norio Tagawa

#	Article	IF	CITATIONS
19	Computationally efficient super resolution ultrasound imaging based on multiple transmission/reception with different carrier frequencies. Proceedings of Meetings on Acoustics, 2017, , .	0.3	0
20	Visualization experiment of frequency dependent attenuation of tissue by multi-spectral Phase-Contrast Imaging. Proceedings of Meetings on Acoustics, 2017, , .	0.3	0
21	High Frame Rate Super Resolution Imaging Based on Ultrasound Synthetic Aperture Scheme. Physics Procedia, 2015, 70, 1216-1220.	1.2	11
22	Finite Element Method Study for Generating Shear Wave by Mode Conversion of Longitudinal Wave at Elasticity Boundary in a Living Body. Japanese Journal of Applied Physics, 2013, 52, 07HF23.	1.5	3
23	A Method for Improving Signal-to-Noise Ratio of Tissue Harmonic Imaging Based on Bayesian Inference Using Information of Fundamental Echoes. Japanese Journal of Applied Physics, 2012, 51, 07GF01.	1.5	2
24	Medical Ultrasound Imaging Using Pulse Compression Technique Based on Split and Merge Strategy. Japanese Journal of Applied Physics, 2010, 49, 07HF15.	1.5	17
25	Preliminary Study of Broadband Transducer for Measurement of Bone Characteristics. Japanese Journal of Applied Physics, 2010, 49, 07HF29.	1.5	11
26	Characteristics of Surface Particle Motion of Coiled Waveguide Caused by Flexural Ultrasonic Waves. Japanese Journal of Applied Physics, 2008, 47, 4271-4275.	1.5	9
27	Inline Transmitter/Receiver System Using Pb(Zn1/3Nb2/3)O3–PbTiO3Single Crystal and Poly(vinylidene) Tj ETQ 4149-4154.	q1 1 0.78 1.5	4314 rgBT / 16
28	Performances of Various Types of Constrained Interpolation Profile Method for Two-Dimensional Numerical Acoustic Simulation. Japanese Journal of Applied Physics, 2008, 47, 3962-3963.	1.5	28
29	Ultrasonic Flaw Detection for High Impedance Materials Using a Transmission Line Coupling Method. Japanese Journal of Applied Physics, 1997, 36, 3287-3289.	1.5	5