## Michael J Zdilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7282184/publications.pdf

Version: 2024-02-01

83 papers 2,155 citations

236925 25 h-index 243625 44 g-index

88 all docs 88 docs citations

88 times ranked 2861 citing authors

| #  | Article                                                                                                                                                                                                                      | IF   | Citations |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Properties and Promise of Catenated Nitrogen Systems As High-Energy-Density Materials. Chemical Reviews, 2020, 120, 5682-5744.                                                                                               | 47.7 | 172       |
| 2  | H <sub>2</sub> -Driven Deoxygenation of Epoxides and Diols to Alkenes Catalyzed by Methyltrioxorhenium. Inorganic Chemistry, 2009, 48, 9998-10000.                                                                           | 4.0  | 152       |
| 3  | Effect of Interlayer Spacing on the Activity of Layered Manganese Oxide Bilayer Catalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2017, 139, 1863-1870.                                 | 13.7 | 144       |
| 4  | Mechanism of Catalytic Aziridination with Manganese Corrole:Â The Often Postulated High-Valent<br>Mn(V) Imido Is Not the Group Transfer Reagent. Journal of the American Chemical Society, 2006, 128,<br>16971-16979.        | 13.7 | 129       |
| 5  | Nickel Confined in the Interlayer Region of Birnessite: an Active Electrocatalyst for Water Oxidation.<br>Angewandte Chemie - International Edition, 2016, 55, 10381-10385.                                                  | 13.8 | 112       |
| 6  | Hydrogen Atom Transfer Reactions of Imido Manganese(V) Corrole:  One Reaction with Two Mechanistic Pathways. Journal of the American Chemical Society, 2007, 129, 11505-11511.                                               | 13.7 | 85        |
| 7  | Mechanism of and exquisite selectivity for O–O bond formation by the heme-dependent chlorite dismutase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15654-15659.             | 7.1  | 80        |
| 8  | Intercalation of Cobalt into the Interlayer of Birnessite Improves Oxygen Evolution Catalysis. ACS Catalysis, 2016, 6, 7739-7743.                                                                                            | 11.2 | 79        |
| 9  | Copper-Intercalated Birnessite as a Water Oxidation Catalyst. Langmuir, 2015, 31, 12807-12813.                                                                                                                               | 3.5  | 69        |
| 10 | Frustrated Solvation Structures Can Enhance Electron Transfer Rates. Journal of Physical Chemistry Letters, 2015, 6, 4804-4808.                                                                                              | 4.6  | 67        |
| 11 | Redox properties of birnessite from a defect perspective. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9523-9528.                                                             | 7.1  | 50        |
| 12 | Total Synthesis of (â^')â€Melotenineâ€A. Angewandte Chemie - International Edition, 2013, 52, 8309-8311.                                                                                                                     | 13.8 | 45        |
| 13 | Systematic Doping of Cobalt into Layered Manganese Oxide Sheets Substantially Enhances Water Oxidation Catalysis. Inorganic Chemistry, 2018, 57, 557-564.                                                                    | 4.0  | 43        |
| 14 | Decoration of the layered manganese oxide birnessite with Mn( <scp>ii</scp> / <scp>iii</scp> ) gives a new water oxidation catalyst with fifty-fold turnover number enhancement. Dalton Transactions, 2015, 44, 12981-12984. | 3.3  | 40        |
| 15 | Water Oxidation Catalyzed by Cobalt Oxide Supported on the Mattagamite Phase of CoTe <sub>2</sub> . ACS Catalysis, 2016, 6, 7393-7397.                                                                                       | 11.2 | 39        |
| 16 | Concerted Dismutation of Chlorite Ion: Water-Soluble Iron-Porphyrins As First Generation Model Complexes for Chlorite Dismutase. Inorganic Chemistry, 2009, 48, 2260-2268.                                                   | 4.0  | 38        |
| 17 | Enhanced Davydov Splitting in Crystals of a Perylene Diimide Derivative. Journal of Physical Chemistry Letters, 2017, 8, 1118-1123.                                                                                          | 4.6  | 37        |
| 18 | Synergistic In-Layer Cobalt Doping and Interlayer Iron Intercalation into Layered MnO <sub>2</sub> Produces an Efficient Water Oxidation Electrocatalyst. ACS Energy Letters, 2018, 3, 2280-2285.                            | 17.4 | 36        |

| #  | Article                                                                                                                                                                                                                                                                                       | IF   | Citations |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Bioinspired Dismutation of Chlorite to Dioxygen and Chloride Catalyzed by a Waterâ€Soluble Iron Porphyrin. Angewandte Chemie - International Edition, 2008, 47, 7697-7700.                                                                                                                    | 13.8 | 33        |
| 20 | Synthesis and Elaboration of the Dinuclear Iron-Imide Cluster Core [Fe2( $\hat{l}\frac{1}{4}$ -NR)2]2+. Inorganic Chemistry, 2007, 46, 1071-1080.                                                                                                                                             | 4.0  | 30        |
| 21 | Enantioselective Synthesis of Cocaine C-1 Analogues using Sulfinimines ( <i>N</i> Journal of Organic Chemistry, 2012, 77, 2345-2359.                                                                                                                                                          | 3.2  | 29        |
| 22 | Nickel Confined in the Interlayer Region of Birnessite: an Active Electrocatalyst for Water Oxidation. Angewandte Chemie, 2016, 128, 10537-10541.                                                                                                                                             | 2.0  | 28        |
| 23 | Acceleration of an Aromatic Claisen Rearrangement via a Designed Spiroligozyme Catalyst that Mimics the Ketosteroid Isomerase Catalytic Dyad. Journal of the American Chemical Society, 2014, 136, 3817-3827.                                                                                 | 13.7 | 27        |
| 24 | Manganese(III) Corrole-Oxidant Adduct as the Active Intermediate in Catalytic Hydrogen Atom Transfer. Inorganic Chemistry, 2008, 47, 10718-10722.                                                                                                                                             | 4.0  | 26        |
| 25 | Iron-Mediated Hydrazine Reduction and the Formation of Iron-Arylimide Heterocubanes. Inorganic Chemistry, 2011, 50, 1551-1562.                                                                                                                                                                | 4.0  | 25        |
| 26 | Complexes of 2,5-Bis(α-pyridyl)pyrrolate with Pd(II) and Pt(II): A Monoanionic Iso-π-Electron Ligand Analog of Terpyridine. Inorganic Chemistry, 2012, 51, 10122-10128.                                                                                                                       | 4.0  | 25        |
| 27 | Synthesis of a High-Valent, Four-Coordinate Manganese Cubane Cluster with a Pendant Mn Atom:<br>Photosystem II-Inspired Manganese–Nitrogen Clusters. Inorganic Chemistry, 2012, 51, 3950-3952.                                                                                                | 4.0  | 23        |
| 28 | Equilibrium Thermodynamics To Form a Rhodium Formyl Complex from Reactions of CO and $H \le 1$ Donor Activation of CO. Journal of the American Chemical Society, 2014, 136, 5856-5859.                                                                                                        | 13.7 | 22        |
| 29 | A Selfâ€Binding, Meltâ€Castable, Crystalline Organic Electrolyte for Sodium Ion Conduction. Angewandte<br>Chemie - International Edition, 2016, 55, 15254-15257.                                                                                                                              | 13.8 | 21        |
| 30 | Intramolecular Pyridone/Enyne Photocycloaddition: Partitioning of the $[4+4]$ and $[2+2]$ Pathways. Organic Letters, 2011, 13, 2180-2183.                                                                                                                                                     | 4.6  | 20        |
| 31 | Synthesis of Tetranuclear, Four-Coordinate Manganese Clusters with "Pinned Butterfly―Geometry Formed by Metal-Mediated Nâ^'N Bond Cleavage in Diphenylhydrazine. Journal of the American Chemical Society, 2011, 133, 4208-4211.                                                              | 13.7 | 19        |
| 32 | Bulk-Phase Ion Conduction in Cocrystalline LiCl· <i>N</i> , <i>N</i> -Dimethylformamide: A New Paradigm for Solid Electrolytes Based upon the Pearson Hard–Soft Acid–Base Concept. Chemistry of Materials, 2015, 27, 5479-5482.                                                               | 6.7  | 19        |
| 33 | Reactivity of a Sterically Hindered Fe(II) Thiolate Dimer with Amines and Hydrazines. Inorganic Chemistry, 2008, 47, 11382-11390.                                                                                                                                                             | 4.0  | 18        |
| 34 | Biomimetic Total Syntheses of (â^')â€Leucoridinesâ€A and C through the Dimerization of (â^')â€Dihydrovalparicine. Angewandte Chemie - International Edition, 2015, 54, 12632-12635.                                                                                                           | 13.8 | 17        |
| 35 | Architectural Spiroligomers Designed for Binuclear Metal Complex Templating. Inorganic Chemistry, 2013, 52, 6457-6463.                                                                                                                                                                        | 4.0  | 16        |
| 36 | Evaluation of the Rh <sup>(II)</sup> –Rh <sup>(II)</sup> Bond Dissociation Enthalpy for [(TMTAA)Rh] <sub>2</sub> by <sup>1</sup> H NMR T <sub>2</sub> Measurements: Application in Determining the Rh–C(O)– BDE in [(TMTAA)Rh] <sub>2</sub> Câ•O. Inorganic Chemistry, 2013, 52, 11509-11513. | 4.0  | 15        |

| #  | Article                                                                                                                                                                                                                                                                                                                                               | IF              | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|
| 37 | Reactive Pendant Mnâ•O in a Synthetic Structural Model of a Proposed S <sub>4</sub> State in the Photosynthetic Oxygen Evolving Complex. Journal of the American Chemical Society, 2017, 139, 4675-4681.                                                                                                                                              | 13.7            | 15        |
| 38 | Effect of water frustration on water oxidation catalysis in the nanoconfined interlayers of layered manganese oxides birnessite and buserite. Journal of Materials Chemistry A, 2021, 9, 6924-6932.                                                                                                                                                   | 10.3            | 15        |
| 39 | Synthesis of Conformationally Constrained 5-Fluoro- and 5-Hydroxymethanopyrrolidines. Ring-Puckered Mimics of <i>Gauche</i> - and <i>Anti</i> -3-Fluoro- and 3-Hydroxypyrrolidines. Journal of Organic Chemistry, 2011, 76, 3626-3634.                                                                                                                | 3.2             | 14        |
| 40 | Synthesis and Electrochemical Reactivity of Molybdenum Dicarbonyl Supported by a Redox-Active $\hat{l}_{\pm}$ -Diimine Ligand. Inorganic Chemistry, 2013, 52, 5457-5463.                                                                                                                                                                              | 4.0             | 14        |
| 41 | Electronic Structure of Manganese Complexes of the Redoxâ€Nonâ€innocent Tetrazene Ligand and Evidence for the Metalâ€Azide/Imido Cycloaddition Intermediate. Chemistry - A European Journal, 2016, 22, 10548-10557.                                                                                                                                   | 3.3             | 14        |
| 42 | Synthesis and Structure of 2,5-Bis[ <i>N</i> -(2,6-mesityl)iminomethyl]pyrrolylcobalt(II): Evidence for One-Electron-Oxidized, Redox Noninnocent Ligand Behavior. Inorganic Chemistry, 2017, 56, 3377-3385.                                                                                                                                           | 4.0             | 12        |
| 43 | Multinuclear Clusters of Manganese and Lithium with Silsesquioxane-Derived Ligands: Synthesis and Ligand Rearrangement by Dioxygen- and Base-Mediated Si–O Bond Cleavage. Inorganic Chemistry, 2021, 60, 2866-2871.                                                                                                                                   | 4.0             | 12        |
| 44 | Synthesis, Structure, and Magnetic Studies of Manganese–Oxygen Clusters of Reduced Coordination Number, Featuring an Unchelated, 5-Coordinate Octanuclear Manganese Cluster with Water-Derived Oxo Ligands. Inorganic Chemistry, 2012, 51, 10095-10104.                                                                                               | 4.0             | 11        |
| 45 | Activation of C–H, N–H, and O–H Bonds via Proton-Coupled Electron Transfer to a Mn(III) Complex of Redox-Noninnocent Octaazacyclotetradecadiene, a Catenated-Nitrogen Macrocyclic Ligand. Journal of the American Chemical Society, 2019, 141, 5699-5709.                                                                                             | 13.7            | 11        |
| 46 | An isolable, metastable, geometrically unique manganese(iv) trihydrazide complex poised for reactivity. Chemical Communications, 2011, 47, 9696.                                                                                                                                                                                                      | 4.1             | 10        |
| 47 | Mechanistic Elucidation of the Stepwise Formation of a Tetranuclear Manganese Pinned Butterfly Cluster via N–N Bond Cleavage, Hydrogen Atom Transfer, and Cluster Rearrangement. Journal of the American Chemical Society, 2014, 136, 17974-17986.                                                                                                    | 13.7            | 10        |
| 48 | Formation of the tetranuclear, tetrakis-terminal-imido Mn <sub>4</sub> <sup>IV</sup> (N <sup>t</sup> Bu) <sub>8</sub> cubane cluster by four-electron reductive elimination of <sup>t</sup> BuNî€N <sup>t</sup> Bu. The role of the s-block ion in stabilization of high-oxidation state intermediates. Chemical Communications, 2014, 50, 1061-1063. | 4.1             | 10        |
| 49 | Asymmetric total synthesis of (â^')-melotenine A. Tetrahedron, 2016, 72, 6107-6112.                                                                                                                                                                                                                                                                   | 1.9             | 10        |
| 50 | Experimental and Theoretical Investigation of the Ion Conduction Mechanism of Tris(adiponitrile)perchloratosodium, a Self-Binding, Melt-Castable Crystalline Sodium Electrolyte. Chemistry of Materials, 2019, 31, 8850-8863.                                                                                                                         | 6.7             | 9         |
| 51 | The polyoctahedral silsesquioxane (POSS) 1,3,5,7,9,11,13,15-octaphenylpentacyclo[9.5.1.1 <sup>3,9</sup> .1 <sup>5,15</sup> .1 <sup>7,13</sup> ]octasilo (octaphenyl-POSS). Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 971-974.                                                                                                 | )X <b>O</b> TTE | 8         |
| 52 | Stable tetramethyl-1,10-phenanthroline osmium( <scp>iii</scp> ) complex in neutral pH as a photoluminescence-following electron-transfer reagent for the detection of acetaminophen in urine and pharmaceutical formulations. Analytical Methods, 2014, 6, 5818-5829.                                                                                 | 2.7             | 8         |
| 53 | Heterobimetallic Complexes of Rhodium Dibenzotetramethylaza[14]annulene [(tmtaa)Rh-M]: Formation, Structures, and Bond Dissociation Energetics. Inorganic Chemistry, 2015, 54, 273-279.                                                                                                                                                               | 4.0             | 8         |
| 54 | Amorphous aluminum-carbide and aluminum–magnesium-carbide nanoparticles from gas phase activation of trimethylaluminum and octamethyldialuminummagnesium using simultaneous spatially and temporally focused ultrashort laser pulses. Nano Structures Nano Objects, 2016, 6, 1-4.                                                                     | 3.5             | 8         |

| #  | Article                                                                                                                                                                                                                                                      | IF                    | Citations |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|
| 55 | Manganeseâ€Mediated Linkage of Perchlorate to Aminotetrazoles Produces Twice the Energy Density of the Unmetalated Salt. Chemistry - A European Journal, 2017, 23, 14138-14142.                                                                              | 3.3                   | 8         |
| 56 | Concise Syntheses of bis―Strychnos Alkaloids (â^')â€Sungucine, (â^')â€Isosungucine, and (â^')â€Strychnogucine from (â^')â€Strychnine. Chemistry - A European Journal, 2016, 22, 11593-11596.                                                                 | â€.3.B                | 7         |
| 57 | Electronic structure and solution behavior of a tris(N,N′-diphenylhydrazido)manganese(iv) propeller complex. Dalton Transactions, 2012, 41, 8093.                                                                                                            | 3.3                   | 6         |
| 58 | Small Molecule Anticonvulsant Agents with Potent In Vitro Neuroprotection. Journal of Molecular Neuroscience, 2012, 47, 368-379.                                                                                                                             | 2.3                   | 6         |
| 59 | A Selfâ€Binding, Meltâ€Castable, Crystalline Organic Electrolyte for Sodium Ion Conduction. Angewandte Chemie, 2016, 128, 15480-15483.                                                                                                                       | 2.0                   | 6         |
| 60 | Unravelling the structural and dynamical complexity of the equilibrium liquid grain-binding layer in highly conductive organic crystalline electrolytes. Journal of Materials Chemistry A, 2018, 6, 4394-4404.                                               | 10.3                  | 6         |
| 61 | Metal-Binding Q-Proline Macrocycles. Journal of Organic Chemistry, 2021, 86, 4867-4876.                                                                                                                                                                      | 3.2                   | 6         |
| 62 | Reimagining the <i>e<sub>g</sub></i> < <sup>1</sup> Electronic State in Oxygen Evolution Catalysis:<br>Oxidationâ€Stateâ€Modulated Superlattices as a New Type of Heterostructure for Maximizing Catalysis.<br>Advanced Energy Materials, 2021, 11, 2101636. | 19.5                  | 6         |
| 63 | Covalent Metal–Metal-Bonded Mn <sub>4</sub> Tetrahedron Inscribed within a Four-Coordinate Manganese Cubane Cluster, As Evidenced by Unexpected Temperature-Independent Diamagnetism. Inorganic Chemistry, 2017, 56, 3733-3737.                              | 4.0                   | 5         |
| 64 | Crystal structure and ionic conductivity of the soft solid crystal: isoquinoline3•(LiCl)2. Ionics, 2018, 24, 343-349.                                                                                                                                        | 2.4                   | 5         |
| 65 | Ubiquity of cubanes in bioinorganic relevant compounds. Coordination Chemistry Reviews, 2022, 450, 214168.                                                                                                                                                   | 18.8                  | 5         |
| 66 | Easy access to the Wilkinson tris(tert-butylimido)nitridomanganate(VII) complex from commercially available starting materials. Inorganic Chemistry Communication, 2013, 37, 225-227.                                                                        | 3.9                   | 4         |
| 67 | Preparation of a "twisted basket―Mn4N8 cluster: a two-hydrogen-atom reduced analogue of the Mn4N8 pinned butterfly. Chemical Communications, 2014, 50, 7780.                                                                                                 | 4.1                   | 3         |
| 68 | A Protocol for Safe Lithiation Reactions Using Organolithium Reagents. Journal of Visualized Experiments, 2016, , .                                                                                                                                          | 0.3                   | 3         |
| 69 | Structure of a pentamanganese(II)–phenoxide cluster with a central five-coordinate oxide:  Mn <sup>II</sup> <sub>5</sub> (μ <sub>6</sub> (μ <sub>6</sub> 666666666666666666666666666666 <td>b<sup>Q</sup>;∕Ā∙Py</td> <td>3</td>                              | b <sup>Q</sup> ;∕Ā∙Py | 3         |
| 70 | Synthesis of Two Lead Complexes of Propellant Stabilizer Compounds: In Pursuit of Novel Propellant Additives. ChemistrySelect, 2017, 2, 11673-11676.                                                                                                         | 1.5                   | 3         |
| 71 | Solvate sponge crystals of (DMF) < sub > 3 < /sub > NaClO < sub > 4 < /sub >: reversible pressure/temperature controlled juicing in a melt/press-castable sodium-ion conductor. Chemical Science, 2021, 12, 5574-5581.                                       | 7.4                   | 3         |
| 72 | Transition-metal-mediated reduction and reversible double-cyclization of cyanuric triazide to an asymmetric bitetrazolate involving cleavage of the six-membered aromatic ring. Chemical Science, 2021, 12, 2268-2275.                                       | 7.4                   | 3         |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                             | IF            | CITATIONS  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|
| 73 | Reaction Mechanism and Energetics of Decomposition of Tetrakis(1,3-dimethyltetrazol-5-imidoperchloratomanganese(II)) from Quantum-Mechanics-based Reactive Dynamics. Journal of the American Chemical Society, 2021, 143, 16960-16975.                                                                                                                                              | 13.7          | 3          |
| 74 | Mechanism of Ion Conduction and Dynamics in Tris( <i>N</i> N-dimethylformamide) Perchloratosodium Solid Electrolytes. Journal of Physical Chemistry C, 2022, 126, 4744-4750.                                                                                                                                                                                                        | 3.1           | 3          |
| 75 | vinylpyridine and structural comparisons: (C <sub>5</sub> H <sub>5</sub> N)LiPF <sub>6</sub> , [ <i>&gt;p</i> -(CH <sub>2</sub> =CH)C <sub>5</sub> H <sub>4</sub> N]LiPF <sub>6</sub> , [(C <sub>5</sub> H <sub>5</sub> N)LiCl] <sub><i>n</i>-(li&gt;</sub> , and [ <i>p</i> -(CH <sub>2</sub> =CH)C <sub>5</sub> H <sub>4</sub> N] <sub>2</sub> Li(μ-Cl) <sub>2</sub> Lif <i>)</i> | 0.5<br>p-(CH< | 2<br>sub>2 |
| 76 | Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 264-269.  Magnetism and EPR Studies of Binuclear Ruthenium Hydride Binuclear Species Bearing Redox-Active Ligands. Inorganic Chemistry, 2018, 57, 7036-7043.                                                                                                                                                      | 4.0           | 2          |
| 77 | Solution and Solid State Properties for Low-Spin Cobalt(II) Dibenzotetramethyltetraaza[14]annulene [(tmtaa)Co <sup>II</sup> ] and the Monopyridine Complex. Inorganic Chemistry, 2019, 58, 1224-1233.                                                                                                                                                                               | 4.0           | 2          |
| 78 | The solid-state conformation of the topical antifungal agent <i>O</i> -naphthalen-2-yl <i>N</i> -methyl- <i>N</i> -(3-methylphenyl)carbamothioate. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1495-1501.                                                                                                                                                     | 0.5           | 2          |
| 79 | Hemicubane topological analogs of the oxygen-evolving complex of photosystem II mediating water-assisted propylene carbonate oxidation. Chemical Communications, 2022, 58, 2532-2535.                                                                                                                                                                                               | 4.1           | 2          |
| 80 | Synthesis of a tethered dibenzotetramethyltetraaza [14] annulene macrocycle and the di-nickel ( <scp>ii</scp> ) derivative. New Journal of Chemistry, 2018, 42, 19369-19376.                                                                                                                                                                                                        | 2.8           | 1          |
| 81 | trans-Bis(hinokitiolato)copper(II)trans-bis(hinokitiolato)palladium(II) cocrystals with (5/1) and (3/2) formulations. Acta Crystallographica Section C: Crystal Structure Communications, 2011, 67, m100-m104.                                                                                                                                                                      | 0.4           | 0          |
| 82 | Crystal structures of sodium-, lithium-, and ammonium 4,5-dihydroxybenzene-1,3-disulfonate (tiron) hydrates. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 918-925.                                                                                                                                                                                  | 0.5           | 0          |
| 83 | Crystal structures of two 1,3-thiazolidin-4-one derivatives featuring sulfide and sulfone functional groups. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 1695-1699.                                                                                                                                                                                | 0.5           | O          |