Fernando J Uribe-Romo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7282061/publications.pdf

Version: 2024-02-01

37 papers 13,152 citations

279798 23 h-index 345221 36 g-index

40 all docs

40 docs citations

times ranked

40

14558 citing authors

#	Article	IF	CITATIONS
1	Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10186-10191.	7.1	5,906
2	Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research, 2010, 43, 58-67.	15.6	2,268
3	A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework. Journal of the American Chemical Society, 2009, 131, 4570-4571.	13.7	1,299
4	Crystalline Covalent Organic Frameworks with Hydrazone Linkages. Journal of the American Chemical Society, 2011, 133, 11478-11481.	13.7	731
5	Metal Insertion in a Microporous Metalâ^'Organic Framework Lined with 2,2′-Bipyridine. Journal of the American Chemical Society, 2010, 132, 14382-14384.	13.7	514
6	Isoreticular Expansion of Metal–Organic Frameworks with Triangular and Square Building Units and the Lowest Calculated Density for Porous Crystals. Inorganic Chemistry, 2011, 50, 9147-9152.	4.0	322
7	A 2D Covalent Organic Framework with 4.7-nm Pores and Insight into Its Interlayer Stacking. Journal of the American Chemical Society, 2011, 133, 19416-19421.	13.7	307
8	Lattice Expansion of Highly Oriented 2D Phthalocyanine Covalent Organic Framework Films. Angewandte Chemie - International Edition, 2012, 51, 2623-2627.	13.8	250
9	Porous, Conductive Metalâ€Triazolates and Their Structural Elucidation by the Chargeâ€Flipping Method. Chemistry - A European Journal, 2012, 18, 10595-10601.	3.3	227
10	Mechanically Shaped Two-Dimensional Covalent Organic Frameworks Reveal Crystallographic Alignment and Fast Li-Ion Conductivity. Journal of the American Chemical Society, 2016, 138, 9767-9770.	13.7	227
11	Polymer-Induced Heteronucleation for the Discovery of New Extended Solids. Angewandte Chemie - International Edition, 2006, 45, 2553-2556.	13.8	139
12	Ring-Opening Reactions within Porous Metalâ^'Organic Frameworks. Inorganic Chemistry, 2010, 49, 6387-6389.	4.0	115
13	Alkyne Benzannulation Reactions for the Synthesis of Novel Aromatic Architectures. Accounts of Chemical Research, 2017, 50, 2776-2788.	15.6	111
14	Systematic variation of the optical bandgap in titanium based isoreticular metal–organic frameworks for photocatalytic reduction of CO ₂ under blue light. Journal of Materials Chemistry A, 2017, 5, 11854-11863.	10.3	102
15	Solid State Multicolor Emission in Substitutional Solid Solutions of Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 11298-11303.	13.7	79
16	Accessing extended and partially fused hexabenzocoronenes using a benzannulation–cyclodehydrogenation approach. Chemical Science, 2013, 4, 3973.	7.4	75
17	Ultrafast rotation in an amphidynamic crystalline metal organic framework. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13613-13618.	7.1	74
18	Ambipolar Transport in Solution-Synthesized Graphene Nanoribbons. ACS Nano, 2016, 10, 4847-4856.	14.6	52

#	Article	IF	CITATIONS
19	A Solid-Solution Approach for Redox Active Metal–Organic Frameworks with Tunable Redox Conductivity. Journal of the American Chemical Society, 2019, 141, 19978-19982.	13.7	43
20	Structural Stability of ⟨i⟩N⟨/i⟩-Alkyl-Functionalized Titanium Metal–Organic Frameworks in Aqueous and Humid Environments. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44529-44533.	8.0	33
21	Framework <i>vs.</i> side-chain amphidynamic behaviour in oligo-(ethylene oxide) functionalised covalent-organic frameworks. Chemical Communications, 2018, 54, 6947-6950.	4.1	29
22	Solid-state NMR and DFT predictions of differences in COOH hydrogen bonding in odd and even numbered n-alkyl fatty acids. Physical Chemistry Chemical Physics, 2016, 18, 12541-12549.	2.8	24
23	Synthesis and Characterization of the Platinum-Substituted Keggin Anion α-H ₂ SiPtW ₁₁ O ₄₀ ^{4–} . Inorganic Chemistry, 2014, 53, 13239-13246.	4.0	18
24	Predicting anisotropic thermal displacements for hydrogens from solid-state NMR: a study on hydrogen bonding in polymorphs of palmitic acid. Physical Chemistry Chemical Physics, 2018, 20, 8475-8487.	2.8	18
25	Polymers stripped down. Nature Chemistry, 2012, 4, 244-245.	13.6	15
26	Heterogeneous photoredox synthesis of N-hydroxy-oxazolidinones catalysed by metal–organic frameworks. Catalysis Science and Technology, 2016, 6, 5647-5655.	4.1	15
27	Multiple rotational rates in a guest-loaded, amphidynamic zirconia metal–organic framework. Chemical Science, 2020, 11, 11579-11583.	7.4	14
28	Modular Design of Fluorescent Dibenzo- and Naphtho-Fluoranthenes: Structural Rearrangements and Electronic Properties. Journal of Organic Chemistry, 2018, 83, 8036-8053.	3.2	13
29	Effect of catalytically active Ce 0.8 Gd 0.2 O 1.9 coating on the heterogeneous combustion of methane within MgO stabilized ZrO 2 porous ceramics. Combustion and Flame, 2017, 180, 32-39.	5.2	12
30	A Combined Mechanochemical and Calcination Route to Mixed Cobalt Oxides for the Selective Catalytic Reduction of Nitrophenols. Molecules, 2020, 25, 89.	3.8	12
31	Thermal and Acoustic Performance of Al ₂ O ₃ , MgO–ZrO ₂ , and SiC Porous Media in a Flow-Stabilized Heterogeneous Combustor. Energy &	5.1	11
32	J-dimer emission in interwoven metal–organic frameworks. Chemical Science, 2020, 11, 4391-4396.	7.4	11
33	Steric and Electronic Effects on the Interaction of Xe and Kr with Functionalized Zirconia Metal–Organic Frameworks. , 2021, 3, 504-510.		8
34	Design and development of ring-on-ring jig for biaxial strength testing of brittle ceramic composite materials: ZrB ₂ -30wt-%SiB ₆ . Advances in Applied Ceramics, 2019, 118, 159-168.	1.1	7
35	Oriented Polythiophene Nanofibers Grown from CdTe Quantum Dot Surfaces. Small, 2012, 8, 1191-1196.	10.0	6
36	Structure–property relationships in titanium-based metal–organic frameworks for the photocatalytic reduction of carbon dioxide. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, a319-a319.	0.1	0

#	Article	IF	CITATIONS
37	Systematic isoreticular expansion of titanium metal–organic frameworks. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, a366-a366.	0.1	O