Jong Leong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/728157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Genomic Consistency of the Loss of Anadromy in an Arctic Fish (<i>Salvelinus alpinus</i>). American Naturalist, 2022, 199, 617-635.	2.1	5
2	Genomic evidence of past and future climate-linked loss in a migratory Arctic fish. Nature Climate Change, 2021, 11, 158-165.	18.8	36
3	Genomic basis of deepâ€water adaptation in Arctic Charr (<i>Salvelinus alpinus</i>) morphs. Molecular Ecology, 2021, 30, 4415-4432.	3.9	13
4	The salmon louse genome: Copepod features and parasitic adaptations. Genomics, 2021, 113, 3666-3680.	2.9	17
5	Limited genetic parallelism underlies recent, repeated incipient speciation in geographically proximate populations of an Arctic fish (<i>Salvelinus alpinus</i>). Molecular Ecology, 2020, 29, 4280-4294.	3.9	17
6	Resolving fineâ€scale population structure and fishery exploitation using sequenced microsatellites in a northern fish. Evolutionary Applications, 2020, 13, 1055-1068.	3.1	32
7	Parallelism in eco-morphology and gene expression despite variable evolutionary and genomic backgrounds in a Holarctic fish. PLoS Genetics, 2020, 16, e1008658.	3.5	73

8 Whole Genome Linkage Disequilibrium and Effective Population Size in a Coho Salmon (Oncorhynchus) Tj ETQq0 0.0 rgBT /Oyerlock 10

9	Design and characterization of an 87k SNP genotyping array for Arctic charr (Salvelinus alpinus). PLoS ONE, 2019, 14, e0215008.	2.5	22
10	A 200K SNP chip reveals a novel Pacific salmon louse genotype linked to differential efficacy of emamectin benzoate. Marine Genomics, 2018, 40, 45-57.	1.1	16
11	Subcellular localization and characterization of estrogenic pathway regulators and mediators in Atlantic salmon spermatozoal cells. Histochemistry and Cell Biology, 2018, 149, 75-96.	1.7	7
12	Caligus rogercresseyi acetylcholinesterase types and variants: a potential marker for organophosphate resistance. Parasites and Vectors, 2018, 11, 570.	2.5	9
13	Regulatory processes that control haploid expression of salmon sperm mRNAs. BMC Research Notes, 2018, 11, 639.	1.4	1
14	The Arctic charr (Salvelinus alpinus) genome and transcriptome assembly. PLoS ONE, 2018, 13, e0204076.	2.5	83
15	The Atlantic salmon genome provides insights into rediploidization. Nature, 2016, 533, 200-205.	27.8	1,021
16	Multi-tissue transcriptome profiles for coho salmon (Oncorhynchus kisutch), a species undergoing rediploidization following whole-genome duplication. Marine Genomics, 2016, 25, 33-37.	1.1	19
17	A comprehensive analysis of teleost MHC class I sequences. BMC Evolutionary Biology, 2015, 15, 32.	3.2	81
18	Chemokine receptors in Atlantic salmon. Developmental and Comparative Immunology, 2015, 49, 79-95.	2.3	37

Jong Leong

#	Article	IF	CITATIONS
19	The Genome and Linkage Map of the Northern Pike (Esox lucius): Conserved Synteny Revealed between the Salmonid Sister Group and the Neoteleostei. PLoS ONE, 2014, 9, e102089.	2.5	122
20	Microsatellite loci for genetic analysis of the arctic gadids Boreogadus saida and Arctogadus glacialis. Conservation Genetics Resources, 2013, 5, 445-448.	0.8	12
21	Sex-specific expression, synthesis and localization of aromatase regulators in one-year-old Atlantic salmon ovaries and testes. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2013, 164, 236-246.	1.6	21