Richard D Vierstra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7281275/publications.pdf Version: 2024-02-01

		4641	3815
202	34,328	85	178
papers	citations	h-index	g-index
211	211	211	36210
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Microautophagy Mediates Vacuolar Delivery of Storage Proteins in Maize Aleurone Cells. Frontiers in Plant Science, 2022, 13, 833612.	1.7	11
2	A trio of ubiquitin ligases sequentially drives ubiquitylation and autophagic degradation of dysfunctional yeast proteasomes. Cell Reports, 2022, 38, 110535.	2.9	3
3	Plant phytochrome B is an asymmetric dimer with unique signalling potential. Nature, 2022, 604, 127-133.	13.7	29
4	Variation in upstream open reading frames contributes to allelic diversity in maize protein abundance. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112516119.	3.3	10
5	Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1. Autophagy, 2021, 17, 2184-2199.	4.3	68
6	Improved <i>Spirodela polyrhiza</i> genome and proteomic analyses reveal a conserved chromosomal structure with high abundance of chloroplastic proteins favoring energy production. Journal of Experimental Botany, 2021, 72, 2491-2500.	2.4	25
7	Differing biophysical properties underpin the unique signaling potentials within the plant phytochrome photoreceptor families. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
8	Corrigendum to: The ATG1/ATG13 Protein Kinase Complex Is Both a Regulator and a Target of Autophagic Recycling in Arabidopsis. Plant Cell, 2021, 33, 3743-3744.	3.1	1
9	Ubiquitylome analysis reveals a central role for the ubiquitin-proteasome system in plant innate immunity. Plant Physiology, 2021, 185, 1943-1965.	2.3	30
10	The SUMO ligase MMS21 profoundly influences maize development through its impact on genome activity and stability. PLoS Genetics, 2021, 17, e1009830.	1.5	10
11	Arabidopsis cargo receptor NBR1 mediates selective autophagy of defective proteins. Journal of Experimental Botany, 2020, 71, 73-89.	2.4	69
12	Photoreversible interconversion of a phytochrome photosensory module in the crystalline state. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 300-307.	3.3	19
13	AUTOPHAGY-RELATED14 and Its Associated Phosphatidylinositol 3-Kinase Complex Promote Autophagy in Arabidopsis. Plant Cell, 2020, 32, 3939-3960.	3.1	36
14	An evolutionarily distinct chaperone promotes 20S proteasome α-ring assembly in plants. Journal of Cell Science, 2020, 133, .	1.2	2
15	Editorial: Intracellular Proteasome Dynamics. Frontiers in Molecular Biosciences, 2020, 7, 143.	1.6	0
16	Autophagy Plays Prominent Roles in Amino Acid, Nucleotide, and Carbohydrate Metabolism during Fixed-Carbon Starvation in Maize. Plant Cell, 2020, 32, 2699-2724.	3.1	53
17	Reticulon proteins modulate autophagy of the endoplasmic reticulum in maize endosperm. ELife, 2020, 9, .	2.8	53
18	Genetic Analyses of the Arabidopsis ATG1 Kinase Complex Reveal Both Kinase-Dependent and Independent Autophagic Routes during Fixed-Carbon Starvation. Plant Cell, 2019, 31, 2973-2995.	3.1	97

#	Article	IF	CITATIONS
19	Proteomic analysis of affinity-purified 26S proteasomes identifies a suite of assembly chaperones in Arabidopsis. Journal of Biological Chemistry, 2019, 294, 17570-17592.	1.6	17
20	HSP101 Interacts with the Proteasome and Promotes the Clearance of Ubiquitylated Protein Aggregates. Plant Physiology, 2019, 180, 1829-1847.	2.3	80
21	Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation. Frontiers in Molecular Biosciences, 2019, 6, 40.	1.6	155
22	ATG8-Binding UIM Proteins Define a New Class of Autophagy Adaptors and Receptors. Cell, 2019, 177, 766-781.e24.	13.5	235
23	PCH1 regulates light, temperature, and circadian signaling as a structural component of phytochrome B-photobodies in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8603-8608.	3.3	49
24	Ubiquitin carboxyl-terminal hydrolases are required for period maintenance of the circadian clock at high temperature in Arabidopsis. Scientific Reports, 2019, 9, 17030.	1.6	17
25	Oxidation and alkylation stresses activate ribosome-quality control. Nature Communications, 2019, 10, 5611.	5.8	65
26	Bacteria Exploit Autophagy for Proteasome Degradation and Enhanced Virulence in Plants. Plant Cell, 2018, 30, 668-685.	3.1	106
27	KELCH F-BOX protein positively influences Arabidopsis seed germination by targeting PHYTOCHROME-INTERACTING FACTOR1. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4120-E4129.	3.3	53
28	Autophagy: The Master of Bulk and Selective Recycling. Annual Review of Plant Biology, 2018, 69, 173-208.	8.6	384
29	SUMOylome Profiling Reveals a Diverse Array of Nuclear Targets Modified by the SUMO Ligase SIZ1 during Heat Stress. Plant Cell, 2018, 30, 1077-1099.	3.1	120
30	Maize multi-omics reveal roles for autophagic recycling in proteome remodelling and lipid turnover. Nature Plants, 2018, 4, 1056-1070.	4.7	124
31	To save or degrade: balancing proteasome homeostasis to maximize cell survival. Autophagy, 2018, 14, 2029-2031.	4.3	13
32	The Vacuolar Protein Sorting-38 Subunit of the Arabidopsis Phosphatidylinositol-3-Kinase Complex Plays Critical Roles in Autophagy, Endosome Sorting, and Gravitropism. Frontiers in Plant Science, 2018, 9, 781.	1.7	31
33	SUMOylation: re-wiring the plant nucleus during stress and development. Current Opinion in Plant Biology, 2018, 45, 143-154.	3.5	116
34	Revised nomenclature and functional overview of the ULP gene family of plant deSUMOylating proteases. Journal of Experimental Botany, 2018, 69, 4505-4509.	2.4	20
35	Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nature Methods, 2017, 14, 443-449.	9.0	150
36	Mass Spectrometric Analyses Reveal a Central Role for Ubiquitylation in Remodeling the Arabidopsis Proteome during Photomorphogenesis. Molecular Plant, 2017, 10, 846-865.	3.9	31

#	Article	IF	CITATIONS
37	A misannotated locus positively influencing Arabidopsis seed germination is deconvoluted using multiple methods, including surrogate splicing. Plant Gene, 2017, 10, 74-85.	1.4	2
38	Photosensing and Thermosensing by Phytochrome B Require Both Proximal and Distal Allosteric Features within the Dimeric Photoreceptor. Scientific Reports, 2017, 7, 13648.	1.6	39
39	The Next Generation of Training for Arabidopsis Researchers: Bioinformatics and Quantitative Biology. Plant Physiology, 2017, 175, 1499-1509.	2.3	11
40	Purification of 26S Proteasomes and Their Subcomplexes from Plants. Methods in Molecular Biology, 2017, 1511, 301-334.	0.4	8
41	Defining the SUMO System in Maize: SUMOylation Is Up-Regulated during Endosperm Development and Rapidly Induced by Stress. Plant Physiology, 2016, 171, 2191-2210.	2.3	58
42	The Proteasome Stress Regulon Is Controlled by a Pair of NAC Transcription Factors in Arabidopsis. Plant Cell, 2016, 28, 1279-1296.	3.1	72
43	Purification of SUMO Conjugates from Arabidopsis for Mass Spectrometry Analysis. Methods in Molecular Biology, 2016, 1475, 257-281.	0.4	6
44	Autophagic Turnover of Inactive 26S Proteasomes in Yeast Is Directed by the Ubiquitin Receptor Cue5 and the Hsp42 Chaperone. Cell Reports, 2016, 16, 1717-1732.	2.9	129
45	Phytochrome B integrates light and temperature signals in <i>Arabidopsis</i> . Science, 2016, 354, 897-900.	6.0	637
46	Morpheus Spectral Counter: A computational tool for labelâ€free quantitative mass spectrometry using the Morpheus search engine. Proteomics, 2016, 16, 920-924.	1.3	7
47	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
48	Crystal Structure of Deinococcus Phytochrome in the Photoactivated State Reveals a Cascade of Structural Rearrangements during Photoconversion. Structure, 2016, 24, 448-457.	1.6	126
49	Ubiquitin Goes Green. Trends in Cell Biology, 2016, 26, 3-5.	3.6	9
50	Autophagic Degradation of the 26S Proteasome Is Mediated by the Dual ATG8/Ubiquitin Receptor RPN10 in Arabidopsis. Molecular Cell, 2015, 58, 1053-1066.	4.5	354
51	X-ray Radiation Induces Deprotonation of the Bilin Chromophore in Crystalline <i>D. radiodurans</i> Phytochrome. Journal of the American Chemical Society, 2015, 137, 2792-2795.	6.6	17
52	The Endosomal Protein CHARGED MULTIVESICULAR BODY PROTEIN1 Regulates the Autophagic Turnover of Plastids in Arabidopsis. Plant Cell, 2015, 27, 391-402.	3.1	112
53	Autophagic Recycling Plays a Central Role in Maize Nitrogen Remobilization. Plant Cell, 2015, 27, 1389-1408.	3.1	211
54	Eat or be eaten: The autophagic plight of inactive 26S proteasomes. Autophagy, 2015, 11, 1927-1928.	4.3	33

#	Article	IF	CITATIONS
55	Crystallographic and Electron Microscopic Analyses of a Bacterial Phytochrome Reveal Local and Global Rearrangements during Photoconversion. Journal of Biological Chemistry, 2014, 289, 24573-24587.	1.6	96
56	<i>Arabidopsis</i> ATG11, a scaffold that links the ATG1-ATG13 kinase complex to general autophagy and selective mitophagy. Autophagy, 2014, 10, 1466-1467.	4.3	47
57	Phytochromes: An Atomic Perspective on Photoactivation and Signaling. Plant Cell, 2014, 26, 4568-4583.	3.1	161
58	Dynamic Structural Changes Underpin Photoconversion of a Blue/Green Cyanobacteriochrome between Its Dark and Photoactivated States. Journal of Biological Chemistry, 2014, 289, 3055-3065.	1.6	55
59	AUTOPHAGY-RELATED11 Plays a Critical Role in General Autophagy- and Senescence-Induced Mitophagy in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 788-807.	3.1	245
60	Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10179-10184.	3.3	190
61	A Photo-Labile Thioether Linkage to Phycoviolobilin Provides the Foundation for the Blue/Green Photocycles in DXCF-Cyanobacteriochromes. Structure, 2013, 21, 88-97.	1.6	92
62	Quantitative Proteomics Reveals Factors Regulating RNA Biology as Dynamic Targets of Stress-induced SUMOylation in Arabidopsis. Molecular and Cellular Proteomics, 2013, 12, 449-463.	2.5	124
63	Structure-Guided Engineering of Plant Phytochrome B with Altered Photochemistry and Light Signaling Â. Plant Physiology, 2013, 161, 1445-1457.	2.3	42
64	Advanced Proteomic Analyses Yield a Deep Catalog of Ubiquitylation Targets in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 1523-1540.	3.1	235
65	Epigenomic programming contributes to the genomic drift evolution of the F-Box protein superfamily in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16927-16932.	3.3	25
66	Characterization and Quantification of Intact 26S Proteasome Proteins by Real-Time Measurement of Intrinsic Fluorescence Prior to Top-down Mass Spectrometry. PLoS ONE, 2013, 8, e58157.	1.1	20
67	Cenetic analyses of the Arabidopsis 26S proteasome regulatory particle reveal its importance during light stress and a specific role for the N-Terminus of RPT2 in development Plant Signaling and Behavior, 2012, 7, 973-978.	1.2	4
68	Regulator and substrate. Autophagy, 2012, 8, 982-984.	4.3	7
69	The Expanding Universe of Ubiquitin and Ubiquitin-Like Modifiers. Plant Physiology, 2012, 160, 2-14.	2.3	184
70	The Light-Response BTB1 and BTB2 Proteins Assemble Nuclear Ubiquitin Ligases That Modify Phytochrome B and D Signaling in Arabidopsis Â. Plant Physiology, 2012, 160, 118-134.	2.3	49
71	Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends in Plant Science, 2012, 17, 526-537.	4.3	349
72	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122

#	Article	IF	CITATIONS
73	Phytochrome signaling: solving the Gordian knot with microbial relatives. Trends in Plant Science, 2011, 16, 417-426.	4.3	44
74	Phylogenetic Comparison of F-Box (FBX) Gene Superfamily within the Plant Kingdom Reveals Divergent Evolutionary Histories Indicative of Genomic Drift. PLoS ONE, 2011, 6, e16219.	1.1	116
75	Reply: Internal Membranes in Maize Aleurone Protein Storage Vacuoles: Beyond Autophagy. Plant Cell, 2011, 23, 4171-4172.	3.1	О
76	Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant Journal, 2011, 66, 818-830.	2.8	190
77	Phytochrome structure and photochemistry: recent advances toward a complete molecular picture. Current Opinion in Plant Biology, 2011, 14, 498-506.	3.5	69
78	The Cullin-RING Ubiquitin-Protein Ligases. Annual Review of Plant Biology, 2011, 62, 299-334.	8.6	410
79	<i>ATG7</i> contributes to plant basal immunity towards fungal infection. Plant Signaling and Behavior, 2011, 6, 1040-1042.	1.2	22
80	Delivery of Prolamins to the Protein Storage Vacuole in Maize Aleurone Cells. Plant Cell, 2011, 23, 769-784.	3.1	137
81	Dual function of Rpn5 in two PCI complexes, the 26S proteasome and COP9 signalosome. Molecular Biology of the Cell, 2011, 22, 911-920.	0.9	40
82	The RPT2 Subunit of the 26S Proteasome Directs Complex Assembly, Histone Dynamics, and Gametophyte and Sporophyte Development in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 4298-4317.	3.1	46
83	The ATG1/ATG13 Protein Kinase Complex Is Both a Regulator and a Target of Autophagic Recycling in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 3761-3779.	3.1	274
84	Arabidopsis Membrane-anchored Ubiquitin-fold (MUB) Proteins Localize a Specific Subset of Ubiquitin-conjugating (E2) Enzymes to the Plasma Membrane. Journal of Biological Chemistry, 2011, 286, 14913-14921.	1.6	29
85	AUXIN UP-REGULATED F-BOX PROTEIN1 Regulates the Cross Talk between Auxin Transport and Cytokinin Signaling during Plant Root Growth Â. Plant Physiology, 2011, 156, 1878-1893.	2.3	36
86	Mass spectrometric identification of SUMO substrates provides insights into heat stress-induced SUMOylation in plants. Plant Signaling and Behavior, 2011, 6, 130-133.	1.2	35
87	ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci. Plant Journal, 2010, 62, 483-493.	2.8	254
88	Structural basis for the photoconversion of a phytochrome to the activated Pfr form. Nature, 2010, 463, 250-254.	13.7	118
89	The RAD23 Family Provides an Essential Connection between the 26S Proteasome and Ubiquitylated Proteins in <i>Arabidopsis</i> Â. Plant Cell, 2010, 22, 124-142.	3.1	113
90	Affinity Purification of the Arabidopsis 26 S Proteasome Reveals a Diverse Array of Plant Proteolytic Complexes. Journal of Biological Chemistry, 2010, 285, 25554-25569.	1.6	119

#	Article	IF	CITATIONS
91	Quaternary organization of a phytochrome dimer as revealed by cryoelectron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10872-10877.	3.3	69
92	Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16512-16517.	3.3	244
93	Cyanochromes Are Blue/Green Light Photoreversible Photoreceptors Defined by a Stable Double Cysteine Linkage to a Phycoviolobilin-type Chromophore. Journal of Biological Chemistry, 2009, 284, 29757-29772.	1.6	75
94	The ATG Autophagic Conjugation System in Maize: ATG Transcripts and Abundance of the ATG8-Lipid Adduct Are Regulated by Development and Nutrient Availability Â. Plant Physiology, 2009, 149, 220-234.	2.3	203
95	The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling typeâ€2 ACC synthase levels. Plant Journal, 2009, 57, 332-345.	2.8	166
96	Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis. Plant Journal, 2009, 59, 344-358.	2.8	137
97	The ubiquitin–26S proteasome system at the nexus of plant biology. Nature Reviews Molecular Cell Biology, 2009, 10, 385-397.	16.1	1,061
98	The RPN5 Subunit of the 26s Proteasome Is Essential for Gametogenesis, Sporophyte Development, and Complex Assembly in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 460-478.	3.1	76
99	Chromophore Heterogeneity and Photoconversion in Phytochrome Crystals and Solution Studied by Resonance Raman Spectroscopy. Angewandte Chemie - International Edition, 2008, 47, 4753-4755.	7.2	64
100	Solution Structure of a Cyanobacterial Phytochrome GAF Domain in the Red-Light-Absorbing Ground State. Journal of Molecular Biology, 2008, 383, 403-413.	2.0	53
101	Characterization of Two Thermostable Cyanobacterial Phytochromes Reveals Global Movements in the Chromophore-binding Domain during Photoconversion. Journal of Biological Chemistry, 2008, 283, 21251-21266.	1.6	51
102	The ATG12-Conjugating Enzyme ATG10 Is Essential for Autophagic Vesicle Formation in <i>Arabidopsis thaliana</i> . Genetics, 2008, 178, 1339-1353.	1.2	275
103	Mutational Analysis of Deinococcus radiodurans Bacteriophytochrome Reveals Key Amino Acids Necessary for the Photochromicity and Proton Exchange Cycle of Phytochromes. Journal of Biological Chemistry, 2008, 283, 12212-12226.	1.6	180
104	Genetic Analysis of SUMOylation in Arabidopsis: Conjugation of SUMO1 and SUMO2 to Nuclear Proteins Is Essential. Plant Physiology, 2007, 145, 119-134.	2.3	244
105	Large-Scale, Lineage-Specific Expansion of a Bric-a-Brac/Tramtrack/Broad Complex Ubiquitin-Ligase Gene Family in Rice. Plant Cell, 2007, 19, 2329-2348.	3.1	96
106	KEEP ON GOING, a RING E3 Ligase Essential for Arabidopsis Growth and Development, Is Involved in Abscisic Acid Signaling. Plant Cell, 2007, 18, 3415-3428.	3.1	347
107	The Ubiquitin-Specific Protease Subfamily UBP3/UBP4 Is Essential for Pollen Development and Transmission in Arabidopsis. Plant Physiology, 2007, 145, 801-813.	2.3	61
108	High Resolution Structure of Deinococcus Bacteriophytochrome Yields New Insights into Phytochrome Architecture and Evolution. Journal of Biological Chemistry, 2007, 282, 12298-12309.	1.6	215

#	Article	IF	CITATIONS
109	The Arabidopsis EIN3 Binding F-Box Proteins EBF1 and EBF2 Have Distinct but Overlapping Roles in Ethylene Signaling. Plant Cell, 2007, 19, 509-523.	3.1	269
110	A ubiquitin-based vector for the co-ordinated synthesis of multiple proteins in plants. Plant Biotechnology Journal, 2007, 5, 413-421.	4.1	15
111	Ubiquitin C-terminal hydrolases 1 and 2 affect shoot architecture in Arabidopsis. Plant Journal, 2007, 51, 441-457.	2.8	79
112	Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta, 2006, 223, 627-636.	1.6	84
113	The Exoribonuclease XRN4 Is a Component of the Ethylene Response Pathway in Arabidopsis. Plant Cell, 2006, 18, 3047-3057.	3.1	126
114	MUBs, a Family of Ubiquitin-fold Proteins That Are Plasma Membrane-anchored by Prenylation. Journal of Biological Chemistry, 2006, 281, 27145-27157.	1.6	51
115	Multiple Heme Oxygenase Family Members Contribute to the Biosynthesis of the Phytochrome Chromophore in Arabidopsis. Plant Physiology, 2006, 140, 856-868.	2.3	111
116	A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature, 2005, 438, 325-331.	13.7	495
117	Autophagic recycling: lessons from yeast help define the process in plants. Current Opinion in Plant Biology, 2005, 8, 165-173.	3.5	268
118	Phytochromes in Microorganisms. , 2005, , 171-195.		16
119	Autophagic Nutrient Recycling in Arabidopsis Directed by the ATG8 and ATG12 Conjugation Pathways. Plant Physiology, 2005, 138, 2097-2110.	2.3	545
120	Cullins 3a and 3b Assemble with Members of the Broad Complex/Tramtrack/Bric-a-Brac (BTB) Protein Family to Form Essential Ubiquitin-Protein Ligases (E3s) in Arabidopsis*. Journal of Biological Chemistry, 2005, 280, 18810-18821.	1.6	142
121	Tripeptidyl Peptidase II. An Oligomeric Protease Complex from Arabidopsis. Plant Physiology, 2005, 138, 1046-1057.	2.3	54
122	Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors. Biochemical Journal, 2005, 392, 103-116.	1.7	185
123	Genetic and Molecular Analysis of Phytochromes from the Filamentous Fungus Neurospora crassa. Eukaryotic Cell, 2005, 4, 2140-2152.	3.4	142
124	Varshavsky's Contributions. Science, 2004, 306, 1290-1292.	6.0	11
125	Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6803-6808.	3.3	410
126	The HWE Histidine Kinases, a New Family of Bacterial Two-Component Sensor Kinases with Potentially Diverse Roles in Environmental Signaling. Journal of Bacteriology, 2004, 186, 445-453.	1.0	83

#	Article	IF	CITATIONS
127	Purification of the Arabidopsis 26 S Proteasome. Journal of Biological Chemistry, 2004, 279, 6401-6413.	1.6	153
128	THE UBIQUITIN 26S PROTEASOME PROTEOLYTIC PATHWAY. Annual Review of Plant Biology, 2004, 55, 555-590.	8.6	1,188
129	Prevention of aggregation after refolding by balanced stabilization–destabilization: production of the Arabidopsis thaliana protein APG8a (At4g21980) for NMR structure determination. Protein Expression and Purification, 2004, 34, 280-283.	0.6	10
130	Evidence for a physical association of the COP9 signalosome, the proteasome, and specific SCF E3 ligases in vivo. Current Biology, 2003, 13, R504-R505.	1.8	76
131	The HECT ubiquitin-protein ligase (UPL) family inArabidopsis: UPL3 has a specific role in trichome development. Plant Journal, 2003, 35, 729-742.	2.8	186
132	Sex and self-denial. Nature, 2003, 423, 229-230.	13.7	7
133	The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends in Plant Science, 2003, 8, 135-142.	4.3	504
134	The Pleiotropic Role of the 26S Proteasome Subunit RPN10 in Arabidopsis Growth and Development Supports a Substrate-Specific Function in Abscisic Acid Signaling. Plant Cell, 2003, 15, 965-980.	3.1	242
135	Mutant Analyses Define Multiple Roles for Phytochrome C in Arabidopsis Photomorphogenesis. Plant Cell, 2003, 15, 1981-1989.	3.1	145
136	The pair of bacteriophytochromes from Agrobacterium tumefaciens are histidine kinases with opposing photobiological properties. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2807-2812.	3.3	146
137	The Small Ubiquitin-like Modifier (SUMO) Protein Modification System in Arabidopsis. Journal of Biological Chemistry, 2003, 278, 6862-6872.	1.6	386
138	The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11519-11524.	3.3	604
139	The Serine-Rich N-Terminal Domain of Oat Phytochrome A Helps Regulate Light Responses and Subnuclear Localization of the Photoreceptor. Plant Physiology, 2002, 129, 1127-1137.	2.3	62
140	Cytokinin Growth Responses in Arabidopsis Involve the 26S Proteasome Subunit RPN12. Plant Cell, 2002, 14, 17-32.	3.1	180
141	The APG8/12-activating Enzyme APG7 Is Required for Proper Nutrient Recycling and Senescence in Arabidopsis thaliana. Journal of Biological Chemistry, 2002, 277, 33105-33114.	1.6	521
142	The ubiquitin-specific protease UBP14 is essential for early embryo development in Arabidopsis thaliana. Plant Journal, 2001, 27, 393-405.	2.8	120
143	Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature, 2001, 414, 776-779.	13.7	299
144	Mass Spectrometric Resolution of Reversible Protein Phosphorylation in Photosynthetic Membranes of Arabidopsis thaliana. Journal of Biological Chemistry, 2001, 276, 6959-6966.	1.6	191

#	Article	IF	CITATIONS
145	The Cellular Level of PR500, a Protein Complex Related to the 19S Regulatory Particle of the Proteasome, Is Regulated in Response to Stresses in Plants. Molecular Biology of the Cell, 2001, 12, 383-392.	0.9	48
146	The Heme-Oxygenase Family Required for Phytochrome Chromophore Biosynthesis Is Necessary for Proper Photomorphogenesis in Higher Plants. Plant Physiology, 2001, 126, 656-669.	2.3	126
147	Protein degradation in signaling. Current Opinion in Plant Biology, 2000, 3, 381-386.	3.5	183
148	The Ubiquitin-Specific Protease Family from Arabidopsis.AtUBP1 and 2 Are Required for the Resistance to the Amino Acid Analog Canavanine. Plant Physiology, 2000, 124, 1828-1843.	2.3	123
149	Use of Ubiquitin Fusions to Augment Protein Expression in Transgenic Plants1. Plant Physiology, 1999, 119, 713-724.	2.3	81
150	Multiubiquitin Chain Binding Subunit MCB1 (RPN10) of the 26S Proteasome Is Essential for Developmental Progression in Physcomitrella patens. Plant Cell, 1999, 11, 1457-1471.	3.1	94
151	Sequences within both the N- and C-terminal domains of phytochrome A are required for PFR ubiquitination and degradation. Plant Journal, 1999, 17, 155-167.	2.8	80
152	Structural and functional analysis of the six regulatory particle triple-A ATPase subunits from the Arabidopsis 26S proteasome. Plant Journal, 1999, 18, 529-539.	2.8	80
153	UPL1 and 2, two 405 kDa ubiquitin-protein ligases from Arabidopsis thaliana related to the HECT-domain protein family. Plant Journal, 1999, 20, 183-195.	2.8	42
154	Fluorescence Analysis of Oat phyA Deletion Mutants Expressed in Tobacco Suggests that the N-Terminal Domain Determines the Photochemical and Spectroscopic Distinctions between phyA' and phyA"â€. Photochemistry and Photobiology, 1999, 69, 728-732.	1.3	14
155	Polypeptide tags, ubiquitous modifiers for plant protein regulation. , 1999, 41, 435-442.		55
156	Structure and functional analysis of the 26S proteasome subunits from plants. Molecular Biology Reports, 1999, 26, 137-146.	1.0	48
157	Functional analysis of the proteasome regulatory particle. Molecular Biology Reports, 1999, 26, 21-28.	1.0	97
158	Bacteriophytochromes: Phytochrome-Like Photoreceptors from Nonphotosynthetic Eubacteria. Science, 1999, 286, 2517-2520.	6.0	352
159	Fluorescence Analysis of Oat phyA Deletion Mutants Expressed in Tobacco Suggests that the N-Terminal Domain Determines the Photochemical and Spectroscopic Distinctions between phyA′ and phyA′′. Photochemistry and Photobiology, 1999, 69, 728.	1.3	13
160	Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. , 1998, 36, 521-528.		356
161	Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle. Trends in Biochemical Sciences, 1998, 23, 244-245.	3.7	127
162	Multiubiquitin Chain Binding and Protein Degradation Are Mediated by Distinct Domains within the 26 S Proteasome Subunit Mcb1. Journal of Biological Chemistry, 1998, 273, 1970-1981.	1.6	168

#	Article	IF	CITATIONS
163	Use of Staphylococcus aureus Protein-A Subdomains as a Tag for the Sensitive Detection of Recombinant Fusion Proteins. BioTechniques, 1998, 25, 374-378.	0.8	1
164	Molecular Organization of the 20S Proteasome Gene Family from Arabidopsis thaliana. Genetics, 1998, 149, 677-692.	1.2	103
165	ATPase and ubiquitin-binding proteins of the yeast proteasome. Molecular Biology Reports, 1997, 24, 17-26.	1.0	22
166	The ubiquitin-activating enzyme (E1) gene family in Arabidopsis thaliana. Plant Journal, 1997, 11, 213-226.	2.8	98
167	The amino-terminus of phytochrome A contains two distinct functional domains. Plant Journal, 1996, 9, 243-257.	2.8	57
168	Proteolysis in plants: mechanisms and functions. Plant Molecular Biology, 1996, 32, 275-302.	2.0	328
169	Members of two gene families encoding ubiquitin-conjugating enzymes, AtUBC1-3 and AtUBC4-6, fromArabidopsis thaliana are differentially expressed. Plant Molecular Biology, 1996, 31, 493-505.	2.0	21
170	The Arabidopsis thaliana UBC7/13/14 Genes Encode a Family of Multiubiquitin Chain-forming E2 Enzymes. Journal of Biological Chemistry, 1996, 271, 12150-12158.	1.6	28
171	Inhibition of Ubiquitin-mediated Proteolysis by the Arabidopsis 26 S Protease Subunit S5a. Journal of Biological Chemistry, 1995, 270, 29660-29663.	1.6	74
172	Is the far-red-absorbing form of Avena phytochrome A that is present at the end of the day able to sustain stem-growth inhibition during the night in transgenic tobacco and tomato seedlings?. Planta, 1995, 197, 225.	1.6	12
173	Identification of a Family of Closely Related Human Ubiquitin Conjugating Enzymes. Journal of Biological Chemistry, 1995, 270, 30408-30414.	1.6	114
174	Homologues of wheat ubiquitin-conjugating enzymes - TaUBC1 and TaUBC4 are encoded by small multigene families in Arabidopsis thaliana. Plant Molecular Biology, 1994, 24, 651-661.	2.0	33
175	Homologs of the essential ubiquitin conjugating enzymes UBC1, 4, and 5 in yeast are encoded by a multigene family in Arabidopsis thaliana. Plant Journal, 1993, 3, 545-552.	2.8	50
176	Two cDNAs from Arabidopsis thaliana encode putative RNA binding proteins containing glycine-rich domains. Plant Molecular Biology, 1993, 21, 695-699.	2.0	76
177	The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell, 1993, 75, 495-505.	13.5	2,185
178	Carboxy-Terminal Deletion Analysis of Oat Phytochrome A Reveals the Presence of Separate Domains Required for Structure and Biological Activity. Plant Cell, 1993, 5, 565.	3.1	11
179	Crystallization and preliminary X-ray investigation of a ubiquitin carrier protein (E2) from Arabidopsis thaliana. Journal of Molecular Biology, 1992, 223, 1183-1186.	2.0	6
180	Novel applications of the ubiquitin-dependent proteolytic pathway in plant genetic engineering. Current Opinion in Biotechnology, 1992, 3, 147-151.	3.3	13

#	Article	IF	CITATIONS
181	Characterization of Tobacco Expressing Functional Oat Phytochrome. Plant Physiology, 1991, 96, 775-785.	2.3	81
182	High Performance Liquid Chromatography Resolution of Ubiquitin Pathway Enzymes from Wheat Germ. Plant Physiology, 1990, 94, 710-716.	2.3	28
183	Red Light-Induced Accumulation of Ubiquitin-Phytochrome Conjugates in Both Monocots and Dicots. Plant Physiology, 1989, 90, 380-384.	2.3	41
184	Characterization of a polyubiquitin gene from Arabidopsis thaliana. Molecular Genetics and Genomics, 1988, 213, 435-443.	2.4	111
185	Demonstration of ATP-Dependent, Ubiquitin-Conjugating Activities in Higher Plants. Plant Physiology, 1987, 84, 332-336.	2.3	32
186	Comparison of the effects of exogenous native phytochrome and in-vivo irradiation on in-vitro transcription in isolated nuclei from barley (Hordeum vulgare). Planta, 1987, 170, 505-514.	1.6	49
187	Ubiquitin, a key component in the degradation of plant proteins. Physiologia Plantarum, 1987, 70, 103-106.	2.6	32
188	COMPARISON OF THE PROTEIN CONFORMATIONS BETWEEN DIFFERENT FORMS (P _r AND) Tj ETQqO Photochemistry and Photobiology, 1987, 45, 429-432.	0 0 rgBT 1.3	Overlock 10 57
189	CHROMOPHORE ROTATION IN 124â€kD ALTON A vena sativa PHYTOCHROME AS MEASURED BY LIGHTâ€INDUCI CHANGES IN LINEAR DICHROISM. Photochemistry and Photobiology, 1985, 41, 221-223.	ED 1.3	31
190	Spectral Characterization and Proteolytic Mapping of Native 120-Kilodalton Phytochrome from Cucurbita pepo L Plant Physiology, 1985, 77, 990-998.	2.3	32
191	Tetranitromethane Oxidation of Phytochrome Chromophore as a Function of Spectral Form and Molecular Weight. Plant Physiology, 1984, 74, 755-758.	2.3	56
192	THE TRANSMISSION OF COMBINED NEUTRAL DENSITY FILTERS. Photochemistry and Photobiology, 1984, 39, 119-122.	1.3	3
193	Native phytochrome: immunoblot analysis of relative molecular mass and in-vitro proteolytic degradation for several plant species. Planta, 1984, 160, 521-528.	1.6	86
194	Purification and initial characterization of 124 kDalton phytochrome from Avena. Biochemistry, 1983, 22, 2498-2505.	1.2	193
195	Photochemistry of 124 Kilodalton <i>Avena</i> Phytochrome <i>In Vitro</i> . Plant Physiology, 1983, 72, 264-267.	2.3	99
196	Kaempferol 3- <i>O</i> -Galactoside, 7- <i>O</i> -Rhamnoside is the Major Green Fluorescing Compound in the Epidermis of <i>Vicia faba</i> . Plant Physiology, 1982, 69, 522-525.	2.3	62
197	Proteolysis alters the spectral properties of 124 kdalton phytochrome from Avena. Planta, 1982, 156, 158-165.	1.6	82
198	Role of Carotenoids in the Phototropic Response of Corn Seedlings. Plant Physiology, 1981, 68, 798-801.	2.3	53

#	Article	IF	CITATIONS
199	Effect of Xenon on the Excited States of Phototropic Receptor Flavin in Corn Seedlings. Plant Physiology, 1981, 67, 996-998.	2.3	26
200	Mechanism of Specific Inhibition of Phototropism by Phenylacetic Acid in Corn Seedling. Plant Physiology, 1981, 67, 1011-1015.	2.3	21
201	A BLUE LIGHT-SENSITIVE CYTOCHROME-FLAVIN COMPLEX FROM CORN COLEOPTILES. FURTHER CHARACTERIZATION. Photochemistry and Photobiology, 1981, 34, 697-703.	1.3	51
202	ROSEOFLAVIN AS A BLUE LIGHT RECEPTOR ANALOG: SPECTROSCOPIC CHARACTERIZATION. Photochemistry and Photobiology, 1980, 32, 393-398.	1.3	26