

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7281190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica, 2022, 9, 408.	9.3	71
2	Electrically pumped high power laser transmitter integrated on thin-film lithium niobate. , 2022, , .		3
3	Spectrally separable photon-pair generation in dispersion engineered thin-film lithium niobate. Optics Letters, 2022, 47, 2830.	3.3	14
4	Electrical control of surface acoustic waves. Nature Electronics, 2022, 5, 348-355.	26.0	22
5	Enhancing Plasmonic Spectral Tunability with Anomalous Material Dispersion. Nano Letters, 2021, 21, 91-98.	9.1	6
6	Impedance-matched differential SNSPDs for practical photon counting with sub-10 ps timing jitter. , 2021, , .		1
7	Probing the Limits of Optical Loss in Ion-Sliced Thin-film Lithium Niobate. , 2021, , .		1
8	Compact and Tunable Forward Coupler Based on High-Impedance Superconducting Nanowires. Physical Review Applied, 2021, 15, .	3.8	5
9	Superconducting MoN thin films prepared by DC reactive magnetron sputtering for nanowire single-photon detectors. Superconductor Science and Technology, 2021, 34, 035012.	3.5	9
10	Enhancing the performance of superconducting nanowire-based detectors with high-filling factor by using variable thickness. Superconductor Science and Technology, 2021, 34, 035010.	3.5	14
11	Single-photon detection in the mid-infrared up to 10 <i>î¼</i> m wavelength using tungsten silicide superconducting nanowire detectors. APL Photonics, 2021, 6, .	5.7	68
12	Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica, 2021, 8, 652.	9.3	184
13	Integrated photonics on thin-film lithium niobate. Advances in Optics and Photonics, 2021, 13, 242.	25.5	503
14	On-chip electro-optic frequency shifters and beam splitters. Nature, 2021, 599, 587-593.	27.8	78
15	Properties of a Nanowire Kinetic Inductance Detector Array. Journal of Low Temperature Physics, 2020, 199, 631-638.	1.4	1
16	Oscilloscopic Capture of Greater-Than-100 GHz, Ultra-Low Power Optical Waveforms Enabled by Integrated Electrooptic Devices. Journal of Lightwave Technology, 2020, 38, 166-173.	4.6	12
17	Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nature Photonics, 2020, 14, 250-255.	31.4	285
18	Resolving Photon Numbers Using a Superconducting Nanowire with Impedance-Matching Taper. Nano Letters, 2020, 20, 3858-3863.	9.1	57

Dı Zни

#	Article	IF	CITATIONS
19	Toward Efficient Microwave-Optical Transduction using Cavity Electro-Optics in Thin-Film Lithium Niobate. , 2020, , .		6
20	Superconducting nanowire single-photon detector on thin- film lithium niobate photonic waveguide. , 2020, , .		5
21	Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction. Optica, 2020, 7, 1714.	9.3	66
22	Observation of non-Abelian Aharonov-Bohm Effect with synthetic gauge fields. , 2020, , .		0
23	Photon-Number Resolution Using Superconducting Tapered Nanowire Detector. , 2020, , .		0
24	Electro-optic frequency shifting using coupled lithium-niobate microring resonators. , 2020, , .		0
25	A General Framework for Nanoscale Electromagnetism. , 2020, , .		0
26	Synthesis and observation of non-Abelian gauge fields in real space. Science, 2019, 365, 1021-1025.	12.6	65
27	Determining the depairing current in superconducting nanowire single-photon detectors. Physical Review B, 2019, 100, .	3.2	31
28	Cascaded Cavities Boost the Indistinguishability of Imperfect Quantum Emitters. Physical Review Letters, 2019, 122, 183602.	7.8	34
29	Demonstration of Microwave Multiplexed Readout of DC-Biased Superconducting Nanowire Detectors. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-4.	1.7	22
30	Jitter Characterization of a Dual-Readout SNSPD. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-4.	1.7	7
31	Superconducting nanowire single-photon detector with integrated impedance-matching taper. Applied Physics Letters, 2019, 114, .	3.3	29
32	Noise Contribution to Switching Current Distributions in NbN Nanowires. , 2019, , .		0
33	A general theoretical and experimental framework for nanoscale electromagnetism. Nature, 2019, 576, 248-252.	27.8	103
34	Operation of a Superconducting Nanowire in Two Detection Modes: KID and SPD. Journal of Low Temperature Physics, 2019, 194, 386-393.	1.4	1
35	A General Theoretical and Experimental Framework for Nanoscale Electromagnetism. , 2019, , .		2
36	Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum. Optics Express, 2018, 26, 11147.	3.4	105

Dı Zнu

#	Article	IF	CITATIONS
37	WSi superconducting nanowire single photon detector with a temporal resolution below 5 ps. , 2018, , .		5
38	A distributed electrical model for superconducting nanowire single photon detectors. Applied Physics Letters, 2018, 113, .	3.3	12
39	A scalable multi-photon coincidence detector based on superconducting nanowires. Nature Nanotechnology, 2018, 13, 596-601.	31.5	62
40	Highly Indistinguishable Room Temperature Single Photon Sources with Quantum Emitters in Bad Cavity Regime. , 2018, , .		1
41	An Aluminum Nitride Integrated Photonics Platform for the Ultraviolet to Visible Spectrum. , 2018, , .		1
42	Single-photon imager based on a superconducting nanowire delay line. Nature Photonics, 2017, 11, 247-251.	31.4	127
43	Bias sputtered NbN and superconducting nanowire devices. Applied Physics Letters, 2017, 111, .	3.3	46
44	Two-photon detector by using superconducting transmission lines. , 2017, , .		0
45	Superconducting nanowire detector jitter limited by detector geometry. Applied Physics Letters, 2016, 109, .	3.3	86
46	On the measurement of intensity correlations from laboratory and astronomical sources with SPADs and SNSPDs. , 2016, , .		2
47	Superconducting Nanowire Single-Photon Detector on Aluminum Nitride. , 2016, , .		8
48	Superconducting Nanowire Single-Photon Detectors and Nanowire-Based Superconducting On-Chip Electronics. , 2016, , .		0
49	Electrically-Excited Surface Plasmon Polaritons with Directionality Control. ACS Photonics, 2015, 2, 385-391.	6.6	34
50	Second-Harmonic Generation from Sub-5 nm Gaps by Directed Self-Assembly of Nanoparticles onto Template-Stripped Gold Substrates. Nano Letters, 2015, 15, 5976-5981.	9.1	86
51	A circuit model for plasmonic resonators. Optics Express, 2014, 22, 9809.	3.4	54
52	Image Dipole Method for the Beaming of Plasmons from Point Sources. ACS Photonics, 2014, 1, 1307-1312.	6.6	7
53	Fabrication of suspended metal–dielectric–metal plasmonic nanostructures. Nanotechnology, 2014, 25, 135303	2.6	16
54	Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures. Nano Letters, 2014, 14, 4023-4029.	9.1	501

Dı Zнu

#	Article	IF	CITATIONS
55	Fano resonances in metallic grating coupled whispering gallery mode resonator. Applied Physics Letters, 2013, 103, .	3.3	18
56	Metallic grating coupled whispering gallery mode resonator. , 2013, , .		0
57	Radially graded index whispering gallery mode resonator for penetration enhancement. Optics Express, 2012, 20, 26285.	3.4	15
58	Whispering gallery mode excitation and collection using fused-tapered fiber tips. , 2012, , .		0