
Angelo Bisazza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7280977/publications.pdf Version: 2024-02-01

ANCELO RISAZZA

#	Article	IF	CITATIONS
1	Extra food provisioning does not affect behavioral lateralization in nestling lesser kestrels. Environmental Epigenetics, 2023, 69, 66-75.	1.8	Ο
2	Guppies (<i>Poecilia reticulata</i>) are deceived by visual illusions during obstacle negotiation. Biology Letters, 2022, 18, 20210548.	2.3	2
3	Zebrafish excel in number discrimination under an operant conditioning paradigm. Animal Cognition, 2022, 25, 917-933.	1.8	4
4	Environmental enrichment decreases anxietyâ€like behavior in zebrafish larvae. Developmental Psychobiology, 2022, 64, e22255.	1.6	7
5	Learning and visual discrimination in newly hatched zebrafish. IScience, 2022, 25, 104283.	4.1	2
6	Continuous versus discrete quantity discrimination in dune snail (Mollusca: Gastropoda) seeking thermal refuges. Scientific Reports, 2021, 11, 3757.	3.3	5
7	Automated Operant Conditioning Devices for Fish. Do They Work?. Animals, 2021, 11, 1397.	2.3	7
8	The role of visual and olfactory cues in social decisions of guppies and zebrafish. Animal Behaviour, 2021, 180, 209-217.	1.9	11
9	Ontogeny and personality affect inhibitory control in guppies, Poecilia reticulata. Animal Behaviour, 2021, 180, 111-121.	1.9	12
10	Stimulus characteristics, learning bias and visual discrimination in zebrafish (Danio rerio). Behavioural Processes, 2021, 192, 104499.	1.1	15
11	Guppies in the puzzle box: innovative problem-solving by a teleost fish. Behavioral Ecology and Sociobiology, 2021, 75, 1.	1.4	9
12	Male and female guppies differ in problem-solving abilities. Environmental Epigenetics, 2020, 66, 83-90.	1.8	19
13	Alarm cue-mediated response and learning in zebrafish larvae. Behavioural Brain Research, 2020, 380, 112446.	2.2	15
14	Susceptibility to Size Visual Illusions in a Non-Primate Mammal (Equus caballus). Animals, 2020, 10, 1673.	2.3	4
15	The devil is in the detail: Zebrafish learn to discriminate visual stimuli only if salient. Behavioural Processes, 2020, 179, 104215.	1.1	16
16	Poor numerical performance of guppies tested in a Skinner box. Scientific Reports, 2020, 10, 16724.	3.3	4
17	Guppies show sex and individual differences in the ability to inhibit behaviour. Animal Cognition, 2020, 23, 535-543.	1.8	13
18	Vegetation cover induces developmental plasticity of lateralization in tadpoles. Environmental Epigenetics, 2020, 66, 393-399.	1.8	6

#	Article	IF	CITATIONS
19	Size discrimination in adult zebrafish (Danio rerio): Normative data and individual variation. Scientific Reports, 2020, 10, 1164.	3.3	7
20	The ontogeny of continuous quantity discrimination in zebrafish larvae (Danio rerio). Animal Cognition, 2020, 23, 731-739.	1.8	10
21	Measuring recognition memory in zebrafish larvae: issues and limitations. PeerJ, 2020, 8, e8890.	2.0	24
22	Guppies learn faster to discriminate between red and yellow than between two shapes. Ethology, 2019, 125, 82-91.	1.1	23
23	Sensory differences mediate species variation in detour task performance. Animal Behaviour, 2019, 155, 153-162.	1.9	20
24	Exploratory behaviour covaries with preference for unfamiliar males in female guppies. Animal Behaviour, 2019, 155, 217-224.	1.9	11
25	Honeybees use absolute rather than relative numerosity in number discrimination. Biology Letters, 2019, 15, 20190138.	2.3	55
26	The effect of experience and olfactory cue in an inhibitory control task in guppies, Poecilia reticulata. Animal Behaviour, 2019, 151, 1-7.	1.9	15
27	Quantity discrimination by treefrogs. Animal Behaviour, 2018, 139, 61-69.	1.9	20
28	Understanding the origin of number sense: a review of fish studies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160511.	4.0	71
29	Factors affecting the measure of inhibitory control in a fish (Poecilia reticulata). Behavioural Processes, 2018, 157, 11-17.	1.1	12
30	Individual differences in cognition among teleost fishes. Behavioural Processes, 2017, 141, 184-195.	1.1	79
31	Complex maze learning by fish. Animal Behaviour, 2017, 125, 69-75.	1.9	25
32	Numerical abilities in fish: A methodological review. Behavioural Processes, 2017, 141, 161-171.	1.1	53
33	Quantitative abilities in a reptile (<i>Podarcis sicula</i>). Biology Letters, 2017, 13, 20160899.	2.3	37
34	Global/local processing of hierarchical visual stimuli in a conflict–choice task by capuchin monkeys (Sapajus spp.). Animal Cognition, 2017, 20, 347-357.	1.8	6
35	Development and testing of a rapid method for measuring shoal size discrimination. Animal Cognition, 2017, 20, 149-157.	1.8	69
36	Do domestic dogs (Canis lupus familiaris) perceive the Delboeuf illusion?. Animal Cognition, 2017, 20, 427-434.	1.8	28

Angelo Bisazza

#	Article	IF	CITATIONS
37	Fish perform like mammals and birds in inhibitory motor control tasks. Scientific Reports, 2017, 7, 13144.	3.3	45
38	The contribution of fish studies to the "number sense―debate. Behavioral and Brain Sciences, 2017, 40, e165.	0.7	2
39	Sex differences in discrimination reversal learning in the guppy. Animal Cognition, 2017, 20, 1081-1091.	1.8	36
40	Experimental setting affects the performance of guppies in a numerical discrimination task. Animal Cognition, 2017, 20, 187-198.	1.8	28
41	Sex differences in spatial abilities and cognitive flexibility in the guppy. Animal Behaviour, 2017, 123, 53-60.	1.9	82
42	Number Versus Continuous Quantities in Lower Vertebrates. , 2016, , 149-174.		6
43	Sex Differences in Discrimination of Shoal Size in the Guppy (<i>Poecilia reticulata</i>). Ethology, 2016, 122, 481-491.	1.1	44
44	Early visual experience influences behavioral lateralization in the guppy. Animal Cognition, 2016, 19, 949-958.	1.8	10
45	Brightness illusion in the guppy (Poecilia reticulata) Journal of Comparative Psychology (Washington, D C: 1983), 2016, 130, 55-61.	0.5	15
46	Quantity discrimination in parental fish: female convict cichlid discriminate fry shoals of different sizes. Animal Cognition, 2016, 19, 959-964.	1.8	11
47	Male and female guppies differ in speed but not in accuracy in visual discrimination learning. Animal Cognition, 2016, 19, 733-744.	1.8	54
48	Use of ordinal information by fish. Scientific Reports, 2015, 5, 15497.	3.3	42
49	Laterality enhances numerical skills in the guppy, Poecilia reticulata. Frontiers in Behavioral Neuroscience, 2015, 9, 285.	2.0	52
50	Ratio dependence in small number discrimination is affected by the experimental procedure. Frontiers in Psychology, 2015, 6, 1649.	2.1	12
51	Guppies discriminate between two quantities of food items but prioritize item size over total amount. Animal Behaviour, 2015, 107, 183-191.	1.9	77
52	At the Root of Math. Advances in Mathematical Cognition and Learning, 2015, 1, 3-33.	0.5	6
53	Relative versus absolute numerical representation in fish: Can guppies represent "fourness�. Animal Cognition, 2015, 18, 1007-1017.	1.8	32
54	Discrimination reversal learning reveals greater female behavioural flexibility in guppies. Biology Letters, 2014, 10, 20140206.	2.3	104

#	Article	IF	CITATIONS
55	Ontogeny of the capacity to compare discrete quantities in fish. Developmental Psychobiology, 2014, 56, 529-536.	1.6	25
56	Non-visual numerical discrimination in a blind cavefish (<i>Phreatichthys andruzzii</i>). Journal of Experimental Biology, 2014, 217, 1902-1909.	1.7	25
57	Spontaneous versus trained numerical abilities. A comparison between the two main tools to study numerical competence in non-human animals. Journal of Neuroscience Methods, 2014, 234, 82-91.	2.5	102
58	Numerical acuity of fish is improved in the presence of moving targets, but only in the subitizing range. Animal Cognition, 2014, 17, 307-316.	1.8	41
59	Extensive training extends numerical abilities of guppies. Animal Cognition, 2014, 17, 1413-1419.	1.8	69
60	Collective enhancement of numerical acuity by meritocratic leadership in fish. Scientific Reports, 2014, 4, 4560.	3.3	21
61	Do Fish Perceive Illusory Motion?. Scientific Reports, 2014, 4, 6443.	3.3	53
62	The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nature Genetics, 2013, 45, 567-572.	21.4	251
63	Individual-level consistency of different laterality measures in the goldbelly topminnow Behavioral Neuroscience, 2012, 126, 845-849.	1.2	13
64	A new training procedure for studying discrimination learning in fish. Behavioural Brain Research, 2012, 230, 343-348.	2.2	39
65	Development and application of a new method to investigate cognition in newborn guppies. Behavioural Brain Research, 2012, 233, 443-449.	2.2	50
66	Prenatal light exposure affects development of behavioural lateralization in a livebearing fish. Behavioural Processes, 2012, 91, 115-118.	1.1	26
67	Evidence for Two Numerical Systems That Are Similar in Humans and Guppies. PLoS ONE, 2012, 7, e31923.	2.5	157
68	Inter-Specific Differences in Numerical Abilities Among Teleost Fish. Frontiers in Psychology, 2012, 3, 483.	2.1	65
69	Subliminally Perceived Odours Modulate Female Intrasexual Competition: An Eye Movement Study. PLoS ONE, 2012, 7, e30645.	2.5	48
70	Number versus continuous quantity in numerosity judgments by fish. Cognition, 2011, 119, 281-287.	2.2	151
71	Isolation and Genetic Characterization of Mother-of-Snow-White, a Maternal Effect Allele Affecting Laterality and Lateralized Behaviors in Zebrafish. PLoS ONE, 2011, 6, e25972.	2.5	9
72	Large Number Discrimination by Mosquitofish. PLoS ONE, 2010, 5, e15232.	2.5	79

#	Article	IF	CITATIONS
73	Early differences in epithalamic left–right asymmetry influence lateralization and personality of adult zebrafish. Behavioural Brain Research, 2010, 206, 208-215.	2.2	92
74	Processing of visual hierarchical stimuli by fish (Xenotoca eiseni). Behavioural Brain Research, 2010, 207, 51-60.	2.2	35
75	Ontogeny of Numerical Abilities in Fish. PLoS ONE, 2010, 5, e15516.	2.5	81
76	Use of Number by Fish. PLoS ONE, 2009, 4, e4786.	2.5	123
77	Escape behaviour elicited by a visual stimulus. A comparison between lateralised and non-lateralised female topminnows. Laterality, 2009, 14, 300-314.	1.0	11
78	The costs of hemispheric specialization in a fish. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 4399-4407.	2.6	65
79	Spontaneous number representation in mosquitofish. Cognition, 2009, 112, 343-348.	2.2	85
80	Lines of Danio rerio selected for opposite behavioural lateralization show differences in anatomical left–right asymmetries. Behavioural Brain Research, 2009, 197, 157-165.	2.2	31
81	Perception of Subjective Contours in Fish. Perception, 2009, 38, 579-590.	1.2	45
82	Innate responses to male sexual harassment in female mosquitofish. Behavioral Ecology and Sociobiology, 2008, 63, 53-62.	1.4	17
83	Do fish count? Spontaneous discrimination of quantity in female mosquitofish. Animal Cognition, 2008, 11, 495-503.	1.8	250
84	Salinity mediates the competitive interactions between invasive mosquitofish and an endangered fish. Oecologia, 2008, 155, 205-213.	2.0	119
85	Emotional responsiveness in fish from lines artificially selected for a high or low degree of laterality. Physiology and Behavior, 2007, 92, 764-772.	2.1	20
86	Artificial selection on laterality in the teleost fish Girardinus falcatus. Behavioural Brain Research, 2007, 178, 29-38.	2.2	28
87	Copulation duration, insemination efficiency and male attractiveness in guppies. Animal Behaviour, 2007, 74, 321-328.	1.9	77
88	Recognition of partly occluded objects by fish. Animal Cognition, 2007, 11, 161-166.	1.8	65
89	Sexual Harassment Influences Group Choice in Female Mosquitofish. Ethology, 2006, 112, 592-598.	1.1	51
90	How fish do geometry in large and in small spaces. Animal Cognition, 2006, 10, 47-54.	1.8	100

6

Angelo Bisazza

#	Article	IF	CITATIONS
91	Quantity discrimination in female mosquitofish. Animal Cognition, 2006, 10, 63-70.	1.8	117
92	Does brain asymmetry allow efficient performance of simultaneous tasks?. Animal Behaviour, 2006, 72, 523-529.	1.9	144
93	Lateralized female topminnows can forage and attend to a harassing male simultaneously. Behavioral Ecology, 2006, 17, 358-363.	2.2	65
94	Invasion success despite reduction of genetic diversity in the European populations of eastern mosquitofish (<i>Gambusia holbrooki</i>). Italian Journal of Zoology, 2006, 73, 67-73.	0.6	30
95	Animals' use of landmarks and metric information to reorient: effects of the size of the experimental space. Cognition, 2005, 97, 121-133.	2.2	85
96	Male sexual harassment and female schooling behaviour in the eastern mosquitofish. Animal Behaviour, 2005, 70, 463-471.	1.9	79
97	Enhanced schooling performance in lateralized fishes. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1677-1681.	2.6	89
98	Further evidence for mirror-reversed laterality in lines of fish selected for leftward or rightward turning when facing a predator model. Behavioural Brain Research, 2005, 156, 165-171.	2.2	36
99	Lateralized fish perform better than nonlateralized fish in spatial reorientation tasks. Behavioural Brain Research, 2005, 163, 122-127.	2.2	77
100	Sire attractiveness influences offspring performance in guppies. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2035-2042.	2.6	108
101	CRYPTIC FEMALE PREFERENCE FOR COLORFUL MALES IN GUPPIES. Evolution; International Journal of Organic Evolution, 2004, 58, 665-669.	2.3	141
102	Cryptic female preference for colorful males in guppies. Evolution; International Journal of Organic Evolution, 2004, 58, 665-9.	2.3	46
103	Female aggregation and male competition reduce costs of sexual harassment in the mosquitofish Gambusia holbrooki. Animal Behaviour, 2003, 65, 1161-1167.	1.9	136
104	Temporal pattern of social aggregation in tadpoles and its influence on the measurement of lateralised response to social stimuli. Physiology and Behavior, 2003, 78, 337-341.	2.1	57
105	Lateralization of aggression in fish. Behavioural Brain Research, 2003, 141, 131-136.	2.2	71
106	Modularity as a fish (Xenotoca eiseni) views it: Conjoining geometric and nongeometric information for spatial reorientation Journal of Experimental Psychology, 2003, 29, 199-210.	1.7	158
107	Male phenotype predicts insemination success in guppies. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1325-1330.	2.6	81
108	Lateralisation of predator avoidance responses in three species of toads. Laterality, 2002, 7, 163-183.	1.0	204

#	Article	IF	CITATIONS
109	Frogs and toads in front of a mirror: lateralisation of response to social stimuli in tadpoles of five anuran species. Behavioural Brain Research, 2002, 134, 417-424.	2.2	86
110	How ancient is brain lateralization?. , 2002, , 9-69.		81
111	Modularity and spatial reorientation in a simple mind: encoding of geometric and nongeometric properties of a spatial environment by fish. Cognition, 2002, 85, B51-B59.	2.2	221
112	Lateralization of ventral fins use during object exploration in the blue gourami (Trichogaster) Tj ETQq0 0 0 rgBT	/Overlock 2.1	10 Jf 50 622
113	Lateralization of response to social stimuli in fishes: A comparison between different methods and species. Physiology and Behavior, 2001, 74, 237-244.	2.1	122
114	Mosquitofish display differential left- and right-eye use during mirror image scrutiny and predator inspection responses. Animal Behaviour, 2001, 61, 305-310.	1.9	109
115	Consistency among different tasks of left–right asymmetries in lines of fish originally selected for opposite direction of lateralization in a detour task. Neuropsychologia, 2001, 39, 1077-1085.	1.6	77
116	Female mate choice in a mating system dominated by male sexual coercion. Behavioral Ecology, 2001, 12, 59-64.	2.2	145
117	Sexual Competition, Coercive Mating and Mate Assessment in the One-Sided Livebearer, Jenynsia multidentata: Are They Predictive of Sexual Dimorphism?. Ethology, 2000, 106, 961-978.	1.1	36
118	Heritability of lateralization in fish: concordance of right–left asymmetry between parents and offspring. Neuropsychologia, 2000, 38, 907-912.	1.6	115
119	Variation of female preference for male coloration in the eastern mosquitofish Gambusia holbrooki. Behavior Genetics, 2000, 30, 207-212.	2.1	30
120	Population lateralisation and social behaviour: A study with 16 species of fish. Laterality, 2000, 5, 269-284.	1.0	40
121	Population lateralisation and social behaviour: A study with 16 species of fish. Laterality, 2000, 5, 269-284.	1.0	243
122	Prior exposure to a predator influences lateralization of cooperative predator inspection in the guppy, <i>Poecilia reticulata</i> . Italian Journal of Zoology, 2000, 67, 175-178.	0.6	27
123	Insemination efficiency of two alternative male mating tactics in the guppyPoecilia reticulata. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1887-1891.	2.6	163
124	Laterality and cooperation: mosquitofish move closer to a predator when the companion is on their left side. Animal Behaviour, 1999, 57, 1145-1149.	1.9	58
125	Possible evolutionary origins of cognitive brain lateralization. Brain Research Reviews, 1999, 30, 164-175.	9.0	405
126	What causes lateralization of detour behavior in fish? evidence for asymmetries in eye use. Behavioural Brain Research, 1999, 103, 229-234.	2.2	113

1.6

132

#	Article	IF	CITATIONS
127	Roots of brain specializations: preferential left-eye use during mirror-image inspection in six species of teleost fish. Behavioural Brain Research, 1999, 106, 175-180.	2.2	178
128	Lateralized agonistic responses and hindlimb use in toads. Animal Behaviour, 1998, 56, 875-881.	1.9	173
129	The Origins of Cerebral Asymmetry: A Review of Evidence of Behavioural and Brain Lateralization in Fishes, Reptiles and Amphibians. Neuroscience and Biobehavioral Reviews, 1998, 22, 411-426.	6.1	447
130	Lateralization of detour behaviour in poeciliid fish: The effect of species, gender and sexual motivation. Behavioural Brain Research, 1998, 91, 157-164.	2.2	133
131	Sexual selection for small size in male mosquitofish (Gambusia holbrooki). Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1125-1129.	2.6	103
132	Lateral asymmetries during escape behavior in a species of teleost fish (Jenynsia lineata). Physiology and Behavior, 1997, 61, 31-35.	2.1	40
133	Rotational Swimming Preferences in Mosquitofish: Evidence for Brain Lateralization?. Physiology and Behavior, 1997, 62, 1405-1407.	2.1	26
134	Detour tests reveal task- and stimulus-specific behavioural lateralization in mosquitofish (Gambusia) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf
135	Laterality in detour behaviour: interspecific variation in poeciliid fish. Animal Behaviour, 1997, 54, 1273-1281.	1.9	150
136	Sexual selection constrained by internal fertilization in the livebearing fishXenotoca eiseni. Animal Behaviour, 1997, 54, 1347-1355.	1.9	28
137	Computer Simulation Suggests that the Spatial Distribution of Males Influences Female Visiting Behaviour in the River Bullhead. Ethology, 1997, 103, 999-1014.	1.1	6
138	Lateralization of displays during aggressive and courtship behaviour in the Siamese fighting fish (Betta splendens). Physiology and Behavior, 1996, 60, 249-252.	2.1	52
139	Right-pawedness in toads. Nature, 1996, 379, 408-408.	27.8	148
140	Armaments and ornaments: an evolutionary explanation of traits of dual utility. Biological Journal of the Linnean Society, 1996, 58, 385-399.	1.6	559
141	Male body size and maleâ€male competition: Interspecific variation in poeciliid fishes. Italian Journal of Zoology, 1996, 63, 365-369.	0.6	19
142	Rotational Bias in Mosquitofish (<i>Gambusia holbrooki</i>): The Role of Laterality and Sun-compass Navigation. Laterality, 1996, 1, 161-175.	1.0	20
143	Rotational Bias in Mosquitofish (Gambusia holbrooki): The Role of Laterality and Sun-compass Navigation. Laterality, 1996, 1, 161-175.	1.0	25

Armaments and ornaments: an evolutionary explanation of traits of dual utility. Biological Journal of the Linnean Society, 1996, 58, 385-399.

#	Article	IF	CITATIONS
145	Lateralization of predator-evasion response in a teleost fish (Girardinus falcatus). Neuropsychologia, 1995, 33, 1637-1646.	1.6	176
146	The cost of parental care and egg cannibalism in the river bullhead, Cottus gobio L. (Pisces, Cottidae). Behavioral Ecology and Sociobiology, 1993, 32, 229.	1.4	91
147	Male competition, female mate choice and sexual size dimorphism in poeciliid fishes. Marine and Freshwater Behaviour and Physiology, 1993, 23, 257-286.	0.9	94
148	The adaptive bases of female sexual behavior: reports from a workshop. Behavioral Ecology, 1993, 4, 184-187.	2.2	68
149	Determinants of size in male eastern mosquitofish (Gambusia holbrooki):Inheritance and plasticity of a sexual selected character. Bollettino Di Zoologia, 1993, 60, 317-322.	0.3	22
150	Male Size and Female Mate Choice in the Eastern Mosquitofish (Gambusia holbrooki: Poeciliidae). Copeia, 1991, 1991, 730.	1.3	75
151	Male competition and female choice in Padogobius martensi (Pisces, Gobiidae). Animal Behaviour, 1989, 38, 406-413.	1.9	107
152	Male Mate Preferences in the Mosquitofish <i>Gambusia holbrooki</i> . Ethology, 1989, 83, 335-343.	1.1	64
153	Female mate choice, male-male competition and parental care in the river bullhead, Cottus gobio L. (Pisces, Cottidae). Animal Behaviour, 1988, 36, 1352-1360.	1.9	159
154	Males whose nests contain eggs are preferred by female Cottus gobio L. (Pisces, Cottidae). Animal Behaviour, 1986, 34, 1580-1582.	1.9	129