
Esther M Berrocoso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7280491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antidepressants and pain. Trends in Pharmacological Sciences, 2006, 27, 348-354.	8.7	371
2	HCN2 Ion Channels Play a Central Role in Inflammatory and Neuropathic Pain. Science, 2011, 333, 1462-1466.	12.6	297
3	The Mu-Opioid Receptor and the NMDA Receptor Associate in PAG Neurons: Implications in Pain Control. Neuropsychopharmacology, 2012, 37, 338-349.	5.4	155
4	Noradrenergic Locus Coeruleus pathways in pain modulation. Neuroscience, 2016, 338, 93-113.	2.3	154
5	Chronic Pain Leads to Concomitant Noradrenergic Impairment and Mood Disorders. Biological Psychiatry, 2013, 73, 54-62.	1.3	149
6	Origin and consequences of brain Toll-like receptor 4 pathway stimulation in an experimental model of depression. Journal of Neuroinflammation, 2011, 8, 151.	7.2	134
7	Neurotrophins Role in Depression Neurobiology: A Review of Basic and Clinical Evidence. Current Neuropharmacology, 2011, 9, 530-552.	2.9	130
8	Differential central pathology and cognitive impairment in pre-diabetic and diabetic mice. Psychoneuroendocrinology, 2013, 38, 2462-2475.	2.7	118
9	Fluoxetine: a case history of its discovery and preclinical development. Expert Opinion on Drug Discovery, 2014, 9, 567-578.	5.0	116
10	Opiates as Antidepressants. Current Pharmaceutical Design, 2009, 15, 1612-1622.	1.9	109
11	Antidepressant-like effects of tramadol and other central analgesics with activity on monoamines reuptake, in helpless rats. Life Sciences, 2002, 72, 143-152.	4.3	108
12	Discovery and development of tramadol for the treatment of pain. Expert Opinion on Drug Discovery, 2017, 12, 1281-1291.	5.0	106
13	Monoaminergic system and depression. Cell and Tissue Research, 2019, 377, 107-113.	2.9	101
14	Rapid β-Amyloid Deposition and Cognitive Impairment After Cholinergic Denervation in APP/PS1 Mice. Journal of Neuropathology and Experimental Neurology, 2013, 72, 272-285.	1.7	91
15	Depressive-like States Heighten the Aversion to Painful Stimuli in a Rat Model of Comorbid Chronic Pain and Depression. Anesthesiology, 2012, 117, 613-625.	2.5	87
16	Active behaviours produced by antidepressants and opioids in the mouse tail suspension test. International Journal of Neuropsychopharmacology, 2013, 16, 151-162.	2.1	72
17	Chemogenetic Silencing of the Locus Coeruleus–Basolateral Amygdala Pathway Abolishes Pain-Induced Anxiety and Enhanced Aversive Learning in Rats. Biological Psychiatry, 2019, 85, 1021-1035.	1.3	64
18	Early responses to deep brain stimulation in depression are modulated by anti-inflammatory drugs. Molecular Psychiatry, 2014, 19, 607-614.	7.9	63

ESTHER M BERROCOSO

#	Article	IF	CITATIONS
19	Activation of AMPA Receptors Mediates the Antidepressant Action of Deep Brain Stimulation of the Infralimbic Prefrontal Cortex. Cerebral Cortex, 2016, 26, 2778-2789.	2.9	60
20	Central vascular disease and exacerbated pathology in a mixed model of type 2 diabetes and Alzheimer's disease. Psychoneuroendocrinology, 2015, 62, 69-79.	2.7	57
21	Role of serotonin 5-HT1A and opioid receptors in the antiallodynic effect of tramadol in the chronic constriction injury model of neuropathic pain in rats. Psychopharmacology, 2007, 193, 97-105.	3.1	54
22	Antidepressant-Like Effect of tramadol and its Enantiomers in Reserpinized Mice: Comparativestudy with Desipramine, Fluvoxamine, Venlafaxine and Opiates. Journal of Psychopharmacology, 2004, 18, 404-411.	4.0	52
23	BDNF and NGF Signalling in Early Phases of Psychosis: Relationship With Inflammation and Response to Antipsychotics After 1 Year. Schizophrenia Bulletin, 2016, 42, sbv078.	4.3	52
24	Monoamines as Drug Targets in Chronic Pain: Focusing on Neuropathic Pain. Frontiers in Neuroscience, 2019, 13, 1268.	2.8	50
25	Evaluation of milnacipran, in comparison with amitriptyline, on cold and mechanical allodynia in a rat model of neuropathic pain. European Journal of Pharmacology, 2011, 655, 46-51.	3.5	48
26	Analgesic antidepressants promote the responsiveness of locus coeruleus neurons to noxious stimulation: Implications for neuropathic pain. Pain, 2012, 153, 1438-1449.	4.2	47
27	The plasticity of the association between mu-opioid receptor and glutamate ionotropic receptor N in opioid analgesic tolerance and neuropathic pain. European Journal of Pharmacology, 2013, 716, 94-105.	3.5	47
28	The Role of 5-HT1A Receptors in Research Strategy for Extensive Pain Treatment. Current Topics in Medicinal Chemistry, 2006, 6, 1997-2003.	2.1	46
29	The Role of the Locus Coeruleus in Pain and Associated Stress-Related Disorders. Biological Psychiatry, 2022, 91, 786-797.	1.3	44
30	Social stress exacerbates the aversion to painful experiences in rats exposed to chronic pain: The role of the locus coeruleus. Pain, 2013, 154, 2014-2023.	4.2	42
31	Cooperative opioid and serotonergic mechanisms generate superior antidepressant-like effects in a mice model of depression. International Journal of Neuropsychopharmacology, 2009, 12, 1033.	2.1	40
32	Role of serotonin 5-HT1A receptors in the antidepressant-like effect and the antinociceptive effect of venlafaxine in mice. International Journal of Neuropsychopharmacology, 2009, 12, 61.	2.1	40
33	The function of alpha-2-adrenoceptors in the rat locus coeruleus is preserved in the chronic constriction injury model of neuropathic pain. Psychopharmacology, 2012, 221, 53-65.	3.1	40
34	Pain exacerbates chronic mild stress-induced changes in noradrenergic transmission in rats. European Neuropsychopharmacology, 2014, 24, 996-1003.	0.7	38
35	Specific Serotonergic Denervation Affects tau Pathology and Cognition without Altering Senile Plaques Deposition in APP/PS1 Mice. PLoS ONE, 2013, 8, e79947.	2.5	38
36	Non-selective opioid receptor antagonism of the antidepressant-like effect of venlafaxine in the forced swimming test in mice. Neuroscience Letters, 2004, 363, 25-28.	2.1	36

ESTHER M BERROCOSO

#	Article	IF	CITATIONS
37	Role of 5-HT1A and 5-HT1B receptors in the antinociceptive effect of tramadol. European Journal of Pharmacology, 2005, 511, 21-26.	3.5	35
38	Reversal of Monoarthritis-induced Affective Disorders by Diclofenac in Rats. Anesthesiology, 2014, 120, 1476-1490.	2.5	35
39	Single oral dose of cannabinoid derivate loaded PLGA nanocarriers relieves neuropathic pain for eleven days. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2623-2632.	3.3	35
40	ERK1/2: Function, signaling and implication in pain and pain-related anxio-depressive disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015, 60, 77-92.	4.8	33
41	Differential role of 5-HT1A and 5-HT1B receptors on the antinociceptive and antidepressant effect of tramadol in mice. Psychopharmacology, 2006, 188, 111-118.	3.1	32
42	In vivo effect of tramadol on locus coeruleus neurons is mediated by α2-adrenoceptors and modulated by serotonin. Neuropharmacology, 2006, 51, 146-153.	4.1	30
43	Stress Increases the Negative Effects of Chronic Pain on Hippocampal Neurogenesis. Anesthesia and Analgesia, 2015, 121, 1078-1088.	2.2	30
44	Comorbid anxiety-like behavior and locus coeruleus impairment in diabetic peripheral neuropathy: A comparative study with the chronic constriction injury model. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 71, 45-56.	4.8	30
45	Cellular and molecular mechanisms triggered by Deep Brain Stimulation in depression: A preclinical and clinical approach. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 73, 1-10.	4.8	29
46	Pain and depression comorbidity causes asymmetric plasticity in the locus coeruleus neurons. Brain, 2022, 145, 154-167.	7.6	29
47	Risperidone administered during adolescence induced metabolic, anatomical and inflammatory/oxidative changes in adult brain: A PET and MRI study in the maternal immune stimulation animal model. European Neuropsychopharmacology, 2019, 29, 880-896.	0.7	27
48	Behavioral, neurochemical and morphological changes induced by the overexpression of munc18-1a in brain of mice: relevance to schizophrenia. Translational Psychiatry, 2013, 3, e221-e221.	4.8	26
49	Pro-/Antiinflammatory Dysregulation in Early Psychosis: Results from a 1-Year Follow-Up Study. International Journal of Neuropsychopharmacology, 2015, 18, pyu037-pyu037.	2.1	26
50	Effect of Deep Brain Stimulation of the ventromedial prefrontal cortex on the noradrenergic system in rats. Brain Stimulation, 2018, 11, 222-230.	1.6	26
51	Ketamine promotes rapid and transient activation of AMPA receptor-mediated synaptic transmission in the dorsal raphe nucleus. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 88, 243-252.	4.8	26
52	In Vivo Effect of Venlafaxine on Locus Coeruleus Neurons: Role of Opioid, α2-Adrenergic, and 5-Hydroxytryptamine1A Receptors. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 101-107.	2.5	25
53	Pain in neuropsychiatry: Insights from animal models. Neuroscience and Biobehavioral Reviews, 2020, 115, 96-115.	6.1	25
54	Effects of S 38093, an antagonist/inverse agonist of histamine H3 receptors, in models of neuropathic pain in rats. European Journal of Pain, 2018, 22, 127-141.	2.8	21

ESTHER M BERROCOSO

#	Article	IF	CITATIONS
55	l-DOPA modifies the antidepressant-like effects of reboxetine and fluoxetine inÂrats. Neuropharmacology, 2013, 67, 349-358.	4.1	20
56	Behavioral effects of combined morphine and MK-801 administration to the locus coeruleus of a rat neuropathic pain model. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 257-266.	4.8	20
57	Comparison of the antinociceptive effects of ibuprofen arginate and ibuprofen in rat models of inflammatory and neuropathic pain. Life Sciences, 2012, 90, 13-20.	4.3	18
58	Activation of Extracellular Signal-Regulated Kinases (ERK 1/2) in the Locus Coeruleus Contributes to Pain-Related Anxiety in Arthritic Male Rats. International Journal of Neuropsychopharmacology, 2017, 20, 463-463.	2.1	17
59	Effect of DSP4 and desipramine in the sensorial and affective component of neuropathic pain in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 70, 57-67.	4.8	16
60	Opioid Activity in the Locus Coeruleus Is Modulated by Chronic Neuropathic Pain. Molecular Neurobiology, 2019, 56, 4135-4150.	4.0	16
61	Neuropathic pain increases spontaneous and noxious-evoked activity of locus coeruleus neurons. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 105, 110121.	4.8	16
62	Extracellular signalâ€regulated kinase activation in the chronic constriction injury model of neuropathic pain in anaesthetized rats. European Journal of Pain, 2013, 17, 35-45.	2.8	15
63	Effect of tapentadol on neurons in the locus coeruleus. Neuropharmacology, 2013, 72, 250-258.	4.1	14
64	Corticotropin-Releasing Factor Mediates Pain-Induced Anxiety through the ERK1/2 Signaling Cascade in Locus Coeruleus Neurons. International Journal of Neuropsychopharmacology, 2015, 18, .	2.1	14
65	The onset of treatment with the antidepressant desipramine is critical for the emotional consequences of neuropathic pain. Pain, 2018, 159, 2606-2619.	4.2	14
66	Omega-3 fatty acids during adolescence prevent schizophrenia-related behavioural deficits: Neurophysiological evidences from the prenatal viral infection with PolyI:C. European Neuropsychopharmacology, 2021, 46, 14-27.	0.7	13
67	Opioid receptors mRNAs expression and opioids agonist-dependent G-protein activation in the rat brain following neuropathy. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 99, 109857.	4.8	12
68	Serotonin 5-HT3 receptor antagonism potentiates the antidepressant activity of citalopram. Neuropharmacology, 2018, 133, 491-502.	4.1	11
69	Deep brain stimulation electrode insertion and depression: Patterns of activity and modulation by analgesics. Brain Stimulation, 2018, 11, 1348-1355.	1.6	11
70	Effects of milnacipran, duloxetine and indomethacin, in polyarthritic rats using the Randall–Selitto model. Behavioural Pharmacology, 2011, 22, 599-606.	1.7	9
71	Preclinical discovery of duloxetine for the treatment of depression . Expert Opinion on Drug Discovery, 2012, 7, 745-755.	5.0	9
72	Selective deletion of Caspase-3 gene in the dopaminergic system exhibits autistic-like behaviour. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 104, 110030.	4.8	9

#	Article	IF	CITATIONS
73	The complex association between the antioxidant defense system and clinical status in early psychosis. PLoS ONE, 2018, 13, e0194685.	2.5	8
74	Opioid and noradrenergic contributions of tapentadol to the inhibition of locus coeruleus neurons in the streptozotocin rat model of polyneuropathic pain. Neuropharmacology, 2018, 135, 202-210.	4.1	7
75	Nerve injury induces transient locus coeruleus activation over time: role of the locus coeruleus–dorsal reticular nucleus pathway. Pain, 2022, 163, 943-954.	4.2	7
76	Desarrollo profesional en investigación traslacional en neurociencias y salud mental: educación y formación dentro del Centro de Investigación Biomédica en Red en Salud Mental. Revista De PsiquiatrÃa Y Salud Mental, 2015, 8, 65-74.	1.8	6
77	Olfactory Neuroepithelium Cells from Cannabis Users Display Alterations to the Cytoskeleton and to Markers of Adhesion, Proliferation and Apoptosis. Molecular Neurobiology, 2021, 58, 1695-1710.	4.0	6
78	The Influence of Oxytocin and Prolactin During a First Episode of Psychosis: The Implication of Sex Differences, Clinical Features, and Cognitive Performance. International Journal of Neuropsychopharmacology, 2022, 25, 666-677.	2.1	6
79	What ketamine can teach us about the opioid system in depression?. Expert Opinion on Drug Discovery, 2020, 15, 1369-1372.	5.0	5
80	P.2.d.022 The modified Tail Suspension Test (mTST): a new paradigm to categorize antidepressants. Effects of classical and atypical opiates. European Neuropsychopharmacology, 2006, 16, S344-S345.	0.7	4
81	The role of BDNF and NGF plasma levels in first-episode schizophrenia: A longitudinal study. European Neuropsychopharmacology, 2022, 57, 105-117.	0.7	4
82	Induced Dipoles and Possible Modulation of Wireless Effects in Implanted Electrodes. Effects of Implanting Insulated Electrodes on an Animal Test to Screen Antidepressant Activity. Journal of Clinical Medicine, 2021, 10, 4003.	2.4	2
83	Automated Mouse Pupil Size Measurement System to Assess Locus Coeruleus Activity with a Deep Learning-Based Approach. Sensors, 2021, 21, 7106.	3.8	2
84	Gene co-expression architecture in peripheral blood in a cohort of remitted first-episode schizophrenia patients. NPJ Schizophrenia, 2022, 8, .	3.6	2
85	Gabapentin, a double-agent acting on cognition in pain?. Pain, 2014, 155, 1909-1910.	4.2	1
86	E.02.01 Psychotropic drugs and pain mechanisms. European Neuropsychopharmacology, 2010, 20, S209-S210.	0.7	0
87	P.2.d.024 Effect of antidepressants on depression, anxiety and cognition in relation with pain models. European Neuropsychopharmacology, 2011, 21, S415.	0.7	0
88	Antidepressant Drugs and Pain. , 2012, , .		0
89	Deep Brain Stimulation: Mechanisms Underpinning Antidepressant Effects. , 2019, , 375-382.		0
90	Deep Brain Stimulation: A Promising Therapeutic Approach to the Treatment of Severe Depressed		0

Patients â€" Current Evidence and Intrinsic Mechanisms. , 2017, , 251-264.

6