Adrianne M Rosales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7280026/publications.pdf

Version: 2024-02-01

28 papers 2,094 citations

430874 18 h-index 28 g-index

33 all docs 33 docs citations

 $\begin{array}{c} 33 \\ times \ ranked \end{array}$

3383 citing authors

#	Article	IF	CITATIONS
1	Immunomodulatory functions of human mesenchymal stromal cells are enhanced when cultured on HEP/COL multilayers supplemented with interferon-gamma. Materials Today Bio, 2022, 13, 100194.	5.5	7
2	Effect of pH on the Properties of Hydrogels Cross-Linked via Dynamic Thia-Michael Addition Bonds. ACS Polymers Au, 2022, 2, 129-136.	4.1	22
3	Phototunable interpenetrating polymer network hydrogels to stimulate the vasculogenesis of stem cell-derived endothelial progenitors. Acta Biomaterialia, 2021, 122, 133-144.	8.3	12
4	Synthetic hydrogels as blood clot mimicking wound healing materials. Progress in Biomedical Engineering, 2021, 3, 042006.	4.9	11
5	A deep learning approach to identify and segment alpha-smooth muscle actin stress fiber positive cells. Scientific Reports, 2021, 11, 21855.	3.3	5
6	Poly- <scp>d</scp> -lysine coated nanoparticles to identify pro-inflammatory macrophages. Nanoscale Advances, 2020, 2, 3849-3857.	4.6	5
7	Preferential Control of Forward Reaction Kinetics in Hydrogels Crosslinked with Reversible Conjugate Additions. Macromolecules, 2020, 53, 3738-3746.	4.8	28
8	Tuning hydrogel properties with sequence-defined, non-natural peptoid crosslinkers. Journal of Materials Chemistry B, 2020, 8, 6925-6933.	5.8	7
9	Mechanism of Polymer-Mediated Cryopreservation Using Poly(methyl glycidyl sulfoxide). Biomacromolecules, 2020, 21, 3047-3055.	5. 4	17
10	Assessing the range of enzymatic and oxidative tunability for biosensor design. Journal of Materials Chemistry B, 2020, 8, 3460-3487.	5.8	8
11	Genetic Control of Radical Cross-linking in a Semisynthetic Hydrogel. ACS Biomaterials Science and Engineering, 2020, 6, 1375-1386.	5.2	13
12	Snapshots of Lifeâ€"Early Career Materials Scientists Managing in the Midst of a Pandemic. Chemistry of Materials, 2020, 32, 3673-3677.	6.7	5
13	Tunable biomaterials from synthetic, sequence-controlled polymers. Biomaterials Science, 2019, 7, 490-505.	5.4	54
14	Impact of Helical Chain Shape in Sequence-Defined Polymers on Polypeptoid Block Copolymer Self-Assembly. Macromolecules, 2018, 51, 2089-2098.	4.8	42
15	Engineering precision biomaterials for personalized medicine. Science Translational Medicine, 2018, 10,	12.4	145
16	Reversible Control of Network Properties in Azobenzene-Containing Hyaluronic Acid-Based Hydrogels. Bioconjugate Chemistry, 2018, 29, 905-913.	3.6	132
17	Hydrogels with Reversible Mechanics to Probe Dynamic Cell Microenvironments. Angewandte Chemie - International Edition, 2017, 56, 12132-12136.	13.8	220
18	Hydrogels with Reversible Mechanics to Probe Dynamic Cell Microenvironments. Angewandte Chemie, 2017, 129, 12300-12304.	2.0	19

#	Article	ΙF	CITATIONS
19	The design of reversible hydrogels to capture extracellular matrix dynamics. Nature Reviews Materials, $2016,1,.$	48.7	554
20	Enhanced user-control of small molecule drug release from a poly(ethylene glycol) hydrogel via azobenzene/cyclodextrin complex tethers. Journal of Materials Chemistry B, 2016, 4, 1035-1039.	5.8	41
21	Photoresponsive Elastic Properties of Azobenzene-Containing Poly(ethylene-glycol)-Based Hydrogels. Biomacromolecules, 2015, 16, 798-806.	5.4	165
22	Polypeptoids: a model system to study the effect of monomer sequence on polymer properties and self-assembly. Soft Matter, 2013, 9, 8400.	2.7	126
23	Persistence length of polyelectrolytes with precisely located charges. Soft Matter, 2013, 9, 90-98.	2.7	50
24	Tunable Phase Behavior of Polystyrene–Polypeptoid Block Copolymers. Macromolecules, 2012, 45, 6027-6035.	4.8	48
25	Determination of the persistence length of helical and non-helical polypeptoids in solution. Soft Matter, 2012, 8, 3673.	2.7	83
26	Control of Crystallization and Melting Behavior in Sequence Specific Polypeptoids. Macromolecules, 2010, 43, 5627-5636.	4.8	97
27	Hierarchical Self-Assembly of a Biomimetic Diblock Copolypeptoid into Homochiral Superhelices. Journal of the American Chemical Society, 2010, 132, 16112-16119.	13.7	142
28	Dynamics of poly(ethylene glycol)-tethered, pH responsive networks. Polymer, 2007, 48, 5042-5048.	3.8	32