List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/727983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Room-Temperature Self-Healable and Remoldable Cross-linked Polymer Based on the Dynamic Exchange of Disulfide Bonds. Chemistry of Materials, 2014, 26, 2038-2046.	6.7	459
2	Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation. Progress in Polymer Science, 2015, 49-50, 175-220.	24.7	443
3	Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities. Progress in Polymer Science, 2018, 80, 39-93.	24.7	419
4	Self-Healing Polymeric Materials Using Epoxy/Mercaptan as the Healant. Macromolecules, 2008, 41, 5197-5202.	4.8	393
5	Studies on the transformation process of PVDF from $\hat{I}\pm$ to \hat{I}^2 phase by stretching. RSC Advances, 2014, 4, 3938-3943.	3.6	263
6	A thermally remendable epoxy resin. Journal of Materials Chemistry, 2009, 19, 1289.	6.7	237
7	Self-Healing of Polymers via Synchronous Covalent Bond Fission/Radical Recombination. Chemistry of Materials, 2011, 23, 5076-5081.	6.7	198
8	Coumarin imparts repeated photochemical remendability to polyurethane. Journal of Materials Chemistry, 2011, 21, 18373.	6.7	183
9	Sunlight driven self-healing, reshaping and recycling of a robust, transparent and yellowing-resistant polymer. Journal of Materials Chemistry A, 2016, 4, 10683-10690.	10.3	177
10	Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites. Nature Communications, 2017, 8, 14657.	12.8	169
11	Catalyst-free dynamic exchange of aromatic Schiff base bonds and its application to self-healing and remolding of crosslinked polymers. Journal of Materials Chemistry A, 2015, 3, 19662-19668.	10.3	166
12	Self-healing polyurethane elastomer with thermally reversible alkoxyamines asÂcrosslinkages. Polymer, 2014, 55, 1782-1791.	3.8	155
13	Mechanically Robust, Selfâ€Healable, and Highly Stretchable "Living―Crosslinked Polyurethane Based on a Reversible CC Bond. Advanced Functional Materials, 2018, 28, 1706050.	14.9	155
14	Polyaniline nanotube arrays as high-performance flexible electrodes for electrochemical energy storage devices. Journal of Materials Chemistry, 2012, 22, 2401.	6.7	149
15	Photo-crosslinkable, self-healable and reprocessable rubbers. Chemical Engineering Journal, 2019, 358, 878-890.	12.7	141
16	Analysis of the interfacial interactions in polypropylene/silica nanocomposites. Polymer International, 2004, 53, 176-183.	3.1	137
17	Integrative solar absorbers for highly efficient solar steam generation. Journal of Materials Chemistry A, 2018, 6, 4642-4648.	10.3	135
18	Intrinsic self-healing of covalent polymers through bond reconnection towards strength restoration. Polymer Chemistry, 2013, 4, 4878.	3.9	134

#	Article	IF	CITATIONS
19	Mechanical properties of low nano-silica filled high density polyethylene composites. Polymer Engineering and Science, 2003, 43, 490-500.	3.1	124
20	Alkoxyamine with reduced homolysis temperature and its application in repeated autonomous self-healing of stiff polymers. Polymer Chemistry, 2013, 4, 4648.	3.9	124
21	Synthesis and characterization of epoxy with improved thermal remendability based on Dielsâ€Alder reaction. Polymer International, 2010, 59, 1339-1345.	3.1	122
22	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	5.9	117
23	High-water-content graphene oxide/polyvinyl alcohol hydrogel with excellent mechanical properties. Journal of Materials Chemistry A, 2014, 2, 10508-10515.	10.3	109
24	Self-healing, Reshaping, and Recycling of Vulcanized Chloroprene Rubber: A Case Study of Multitask Cyclic Utilization of Cross-linked Polymer. ACS Sustainable Chemistry and Engineering, 2016, 4, 2715-2724.	6.7	106
25	Interfacial effects in polypropylene-silica nanocomposites. Journal of Applied Polymer Science, 2004, 92, 1771-1781.	2.6	104
26	A dual mechanism single-component self-healing strategy for polymers. Journal of Materials Chemistry, 2010, 20, 6030.	6.7	103
27	Repeated Intrinsic Self-Healing of Wider Cracks in Polymer via Dynamic Reversible Covalent Bonding Molecularly Combined with a Two-Way Shape Memory Effect. ACS Applied Materials & Interfaces, 2018, 10, 38538-38546.	8.0	101
28	Title is missing!. Journal of Materials Science Letters, 2000, 19, 1159-1161.	0.5	99
29	A seawater triggered dynamic coordinate bond and its application for underwater self-healing and reclaiming of lipophilic polymer. Chemical Science, 2016, 7, 2736-2742.	7.4	97
30	Interface Engineering of Carbonâ€Based Nanocomposites for Advanced Electrochemical Energy Storage. Advanced Materials Interfaces, 2018, 5, 1800430.	3.7	95
31	Carbon-black-filled polyolefine as a positive temperature coefficient material: Effect of composition, processing, and filler treatment. Journal of Applied Polymer Science, 1998, 70, 559-566.	2.6	89
32	Silica nanonetwork confined in nitrogen-doped ordered mesoporous carbon framework for high-performance lithium-ion battery anodes. Nanoscale, 2015, 7, 3971-3975.	5.6	86
33	A sunlight self-healable transparent strain sensor with high sensitivity and durability based on a silver nanowire/polyurethane composite film. Journal of Materials Chemistry A, 2019, 7, 2315-2325.	10.3	86
34	Imparting Ultra‣ow Friction and Wear Rate to Epoxy by the Incorporation of Microencapsulated Lubricant?. Macromolecular Materials and Engineering, 2009, 294, 20-24.	3.6	76
35	Stabilization of catechol–boronic ester bonds for underwater self-healing and recycling of lipophilic bulk polymer in wider pH range. Journal of Materials Chemistry A, 2016, 4, 14122-14131.	10.3	75
36	Self-Healing of Thermoplastics via Living Polymerization. Macromolecules, 2010, 43, 595-598.	4.8	71

#	Article	IF	CITATIONS
37	Application of alkoxyamine in self-healing of epoxy. Journal of Materials Chemistry A, 2014, 2, 6558-6566.	10.3	70
38	Atomic force microscopy study on structure and properties of irradiation grafted silica particles in polypropylene-based nanocomposites. Journal of Applied Polymer Science, 2001, 80, 2218-2227.	2.6	69
39	A facile method for imparting sunlight driven catalyst-free self-healability and recyclability to commercial silicone elastomer. Polymer, 2017, 108, 339-347.	3.8	69
40	Dynamic reversible bonds enable external stress-free two-way shape memory effect of a polymer network and the interrelated intrinsic self-healability of wider crack and recyclability. Journal of Materials Chemistry A, 2018, 6, 16053-16063.	10.3	68
41	Theoretical consideration and modeling of selfâ€healing polymers. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 229-241.	2.1	67
42	Adaptable Interlocking Macromolecular Networks with Homogeneous Architecture Made from Immiscible Single Networks. Macromolecules, 2020, 53, 584-593.	4.8	67
43	Fabrication and nanostructure control of super-hierarchical carbon materials from heterogeneous bottlebrushes. Chemical Science, 2017, 8, 2101-2106.	7.4	62
44	Preparation of Binary Conductive Polymer Composites with Very Low Percolation Threshold by Latex Blending. Macromolecular Rapid Communications, 2003, 24, 889-893.	3.9	61
45	Design and synthesis of self-healing polymers. Science China Chemistry, 2012, 55, 648-676.	8.2	60
46	Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability. Advanced Composites and Hybrid Materials, 2021, 4, 1048-1058.	21.1	60
47	Microencapsulation of styrene with melamine-formaldehyde resin. Colloid and Polymer Science, 2009, 287, 1089-1097.	2.1	56
48	Self-healing polyvinyl chloride (PVC) based on microencapsulated nucleophilic thiol-click chemistry. Polymer, 2015, 69, 1-9.	3.8	53
49	Cobalt and nitrogen codoped ultrathin porous carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. Carbon, 2019, 141, 704-711.	10.3	53
50	Thermo-molded self-healing thermoplastics containing multilayer microreactors. Journal of Materials Chemistry A, 2013, 1, 7191.	10.3	51
51	Selfâ€healing polymeric materials towards nonâ€structural recovery of functional properties. Polymer International, 2014, 63, 1741-1749.	3.1	49
52	Preparation of graphene oxide and polymer-like quantum dots and their one- and two-photon induced fluorescence properties. Physical Chemistry Chemical Physics, 2016, 18, 4800-4806.	2.8	49
53	Effect of filler treatment on temperature dependence of resistivity of carbon-black-filled polymer blends. Journal of Applied Polymer Science, 1999, 73, 489-494.	2.6	46
54	Ultrahigh energy fiber-shaped supercapacitors based on porous hollow conductive polymer composite fiber electrodes. Journal of Materials Chemistry A, 2018, 6, 12250-12258.	10.3	45

#	Article	IF	CITATIONS
55	Reversibility of solid state radical reactions in thermally remendable polymers with C–ON bonds. Journal of Materials Chemistry, 2012, 22, 13076.	6.7	44
56	Polyimide/Crown Ether Composite Films with Necklace-Like Supramolecular Structure and Improved Mechanical, Dielectric, and Hydrophobic Properties. Macromolecules, 2015, 48, 2173-2183.	4.8	44
57	Role of reactive compatibilization in preparation of nanosilica/polypropylene composites. Polymer Engineering and Science, 2007, 47, 499-509.	3.1	43
58	Synergistic effect of dual targeting vaccine adjuvant with aminated β-glucan and CpG-oligodeoxynucleotides for both humoral and cellular immune responses. Acta Biomaterialia, 2018, 78, 211-223.	8.3	42
59	Irradiation-induced surface graft polymerization onto calcium carbonate nanoparticles and its toughening effects on polypropylene composites. Polymer Engineering and Science, 2005, 45, 529-538.	3.1	41
60	Reversibly Interlocked Macromolecule Networks with Enhanced Mechanical Properties and Wide pH Range of Underwater Self-Healability. ACS Applied Materials & Interfaces, 2020, 12, 27614-27624.	8.0	41
61	Interfacial interaction in Ag/polymer nanocomposite films. Journal of Materials Science Letters, 2001, 20, 1473-1476.	0.5	40
62	A Facile Approach Toward Scalable Fabrication of Reversible Shapeâ€Memory Polymers with Bonded Elastomer Microphases as Internal Stress Provider. Macromolecular Rapid Communications, 2017, 38, 1700124.	3.9	40
63	Self-Healing of Polymer in Acidic Water toward Strength Restoration through the Synergistic Effect of Hydrophilic and Hydrophobic Interactions. ACS Applied Materials & Interfaces, 2017, 9, 37300-37309.	8.0	39
64	Effect of Drawing Induced Dispersion of Nano-Silica on Performance Improvement of Poly(propylene)-Based Nanocomposites. Macromolecular Rapid Communications, 2006, 27, 581-585.	3.9	38
65	A Novel Self-Healing Epoxy System with Microencapsulated Epoxy and Imidazole Curing Agent. Advanced Composites Letters, 2007, 16, 096369350701600.	1.3	37
66	Rigid bio-foam plastics with intrinsic flame retardancy derived from soybean oil. Journal of Materials Chemistry A, 2013, 1, 2533.	10.3	37
67	Polypropylene composites filled with in-situ grafting polymerization modified nano-silica particles. Journal of Materials Science, 2004, 39, 3475-3478.	3.7	36
68	A facile heteroaggregate-template route to hollow magnetic mesoporous spheres with tunable shell structures. Journal of Materials Chemistry, 2011, 21, 9020.	6.7	36
69	Self-healing of thermoplastics via reversible addition–fragmentation chain transfer polymerization. Journal of Materials Chemistry, 2011, 21, 9060.	6.7	35
70	Flame-retardant effect of a phenethyl-bridged DOPO derivative and layered double hydroxides for epoxy resin. RSC Advances, 2017, 7, 46236-46245.	3.6	35
71	A Very Simple Strategy for Preparing External Stressâ€Free Twoâ€Way Shape Memory Polymers by Making Use of Hydrogen Bonds. Macromolecular Rapid Communications, 2018, 39, e1700714.	3.9	33
72	Topological rearrangement-derived homogeneous polymer networks capable of reversibly interlocking: From phantom to reality and beyond. Materials Today, 2020, 33, 45-55.	14.2	33

#	Article	IF	CITATIONS
73	Electrical Response to Organic Vapor of Conductive Composites from Amorphous Polymer/Carbon Black Prepared by Polymerization Filling. Macromolecular Materials and Engineering, 2003, 288, 103-107.	3.6	32
74	A thermally remendable and reprocessable crosslinked methyl methacrylate polymer based on oxygen insensitive dynamic reversible C–ON bonds. RSC Advances, 2016, 6, 6350-6357.	3.6	32
75	Moisture Battery Formed by Direct Contact of Magnesium with Foamed Polyaniline. Angewandte Chemie - International Edition, 2016, 55, 1805-1809.	13.8	31
76	A novel sensor for organic solvent vapors based on conductive amorphous polymer composites: carbon black/poly(butyl methacrylate). Polymer Bulletin, 2003, 50, 99-106.	3.3	30
77	All-plant fiber composites. II: Water absorption behavior and biodegradability of unidirectional sisal fiber reinforced benzylated wood. Polymer Composites, 2003, 24, 367-379.	4.6	30
78	Surface grafting onto SiC nanoparticles with glycidyl methacrylate in emulsion. Journal of Polymer Science Part A, 2004, 42, 3842-3852.	2.3	30
79	Continuous High-Content Keratin Fibers with Balanced Properties Derived from Wool Waste. ACS Sustainable Chemistry and Engineering, 2020, 8, 18148-18156.	6.7	30
80	Effects of reactive compatibilization on the performance of nano-silica filled polypropylene composites. Journal of Materials Science, 2006, 41, 5767-5770.	3.7	29
81	†Bridge' effect of CdS nanoparticles in the interface of graphene–polyaniline composites. Journal of Materials Chemistry, 2012, 22, 10999.	6.7	29
82	Repeatedly Intrinsic Self-Healing of Millimeter-Scale Wounds in Polymer through Rapid Volume Expansion Aided Host–Guest Interaction. ACS Applied Materials & Interfaces, 2020, 12, 22534-22542.	8.0	29
83	Dynamically Cross-Linked Polymeric Binder-Made Durable Silicon Anode of a Wide Operating Temperature Li-Ion Battery. ACS Applied Materials & Interfaces, 2021, 13, 28737-28748.	8.0	28
84	Adaptable Reversibly Interlocked Networks from Immiscible Polymers Enhanced by Hierarchy-Induced Multilevel Energy Consumption Mechanisms. Macromolecules, 2021, 54, 4802-4815.	4.8	27
85	Free radical polymerization aided self-healing. Journal of Intelligent Material Systems and Structures, 2014, 25, 31-39.	2.5	26
86	Studies on synergistic effect of CNT and CB nanoparticles on PVDF. Polymer Composites, 2015, 36, 2248-2254.	4.6	26
87	Observation of mutual diffusion of macromolecules in PS/PMMA binary films by confocal Raman microscopy. Soft Matter, 2012, 8, 4780-4787.	2.7	25
88	Effect of multiwalled carbon nanotubes and phenethyl-bridged DOPO derivative on flame retardancy of epoxy resin. Journal of Polymer Research, 2018, 25, 1.	2.4	25
89	External Stress-Free Reversible Multiple Shape Memory Polymers. ACS Applied Materials & Interfaces, 2019, 11, 31346-31355.	8.0	25
90	Improvement of conductive network quality in carbon black-filled polymer blends. Journal of Applied Polymer Science, 2002, 84, 2768-2775.	2.6	24

#	Article	IF	CITATIONS
91	Interfacial interaction in sisal/epoxy composites and its influence on impact performance. Polymer Composites, 2002, 23, 182-192.	4.6	24
92	Tribological behavior of epoxy composites containing reactive SiC nanoparticles. Journal of Applied Polymer Science, 2007, 104, 2608-2619.	2.6	24
93	Thermo-moldable self-healing commodity plastics with heat resisting and oxygen-insensitive healant capable of room temperature redox cationic polymerization. Journal of Materials Chemistry A, 2015, 3, 1858-1862.	10.3	24
94	Imparting External Stress-Free Two-Way Shape Memory Effect to Commodity Polyolefins by Manipulation of Their Hierarchical Structures. ACS Macro Letters, 2019, 8, 1141-1146.	4.8	24
95	Covalently Connecting Nanoparticles with Epoxy Matrix and its Effect on the Improvement of Tribological Performance of the Composites. Polymers and Polymer Composites, 2005, 13, 245-252.	1.9	23
96	Effective excitation and control of guided surface plasmon polaritons in a conjugated polymer–silver nanowire composite system. Journal of Materials Chemistry C, 2013, 1, 1265-1271.	5.5	23
97	Double melting phenomena of polyphenylene sulfide and its blends. Journal of Applied Polymer Science, 1994, 51, 57-62.	2.6	22
98	Improvement of notch toughness of low nano-SiO2 filled polypropylene composites. Journal of Materials Science Letters, 2003, 22, 1027-1030.	0.5	22
99	Blends of liquid crystalline polyester-polyurethane and epoxy: Preparation and properties. Journal of Applied Polymer Science, 2003, 88, 783-787.	2.6	22
100	Effect of migration of layered nanoparticles during melt blending on the phase morphology of poly (ethylene terephthalate)/polyamide 6/montmorillonite ternary nanocomposites. RSC Advances, 2015, 5, 29924-29930.	3.6	22
101	Control of plasmonic fluorescence enhancement on self-assembled 2-D colloidal crystals. Journal of Materials Chemistry C, 2015, 3, 6185-6191.	5.5	21
102	Well-dispersed CoO embedded in 3D N-S-doped carbon framework through morphology-retaining pyrolysis as efficient oxygen reduction and evolution electrocatalyst. Electrochimica Acta, 2019, 295, 624-631.	5.2	21
103	The Preparation of Self-Reinforced Sisal Fiber Composites. Polymers and Polymer Composites, 2004, 12, 297-308.	1.9	20
104	Strong contribution of pore morphology to the high-rate electrochemical performance of lithium-ion batteries. Chemical Communications, 2016, 52, 803-806.	4.1	20
105	Selfâ€healable and thiol–ene UVâ€curable waterborne polyurethane for anticorrosion coating. Journal of Applied Polymer Science, 2019, 136, 47700.	2.6	20
106	N/S co-doped 3D carbon framework prepared by a facile morphology-controlled solid-state pyrolysis method for oxygen reduction reaction in both acidic and alkaline media. Journal of Energy Chemistry, 2019, 34, 220-226.	12.9	20
107	Surface modification of magnetic metal nanoparticles and its influence on the performance of polymer composites. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1070-1084.	2.1	19
108	Fabrication and characterization of PbS/multiwalled carbon nanotube heterostructures. Applied Physics Letters, 2007, 90, 161103.	3.3	19

#	Article	IF	CITATIONS
109	A strategy for significant improvement of strength of semi-crystalline polymers with the aid of nanoparticles. Journal of Materials Chemistry, 2012, 22, 4592.	6.7	19
110	Core-Shell Structure Design of Hollow Mesoporous Silica Nanospheres Based on Thermo-Sensitive PNIPAM and pH-Responsive Catechol-Fe3+ Complex. Polymers, 2019, 11, 1832.	4.5	19
111	Performance improvement of N-doped carbon ORR catalyst via large through-hole structure. Nanotechnology, 2020, 31, 335717.	2.6	19
112	Tailored modular assembly derived self-healing polythioureas with largely tunable properties covering plastics, elastomers and fibers. Nature Communications, 2022, 13, 2633.	12.8	19
113	Natural Vegetable Fibre / Plasticised Natural Vegetable Fibre - a Candidate for Low Cost and Fully Biodegradable Composite. Advanced Composites Letters, 1999, 8, 096369359900800.	1.3	18
114	Carbon black filled poly(2-ethylhexyl methacrylate) as a candidate for gas sensing material. Journal of Materials Science Letters, 2003, 22, 1057-1059.	0.5	18
115	Plant oilâ€based biofoam composites with balanced performance. Polymer International, 2009, 58, 403-411.	3.1	18
116	Frictional surface temperature determination of high-temperature-resistant semicrystalline polymers by using their double melting features. Journal of Applied Polymer Science, 1997, 63, 589-593.	2.6	17
117	Studies on the morphology and the thermal properties of high-density polyethylene filled with graphite. Journal of Materials Science, 2006, 41, 3175-3178.	3.7	17
118	Dual-crosslinking side chains with an asymmetric chain structure: a facile pathway to a robust, self-healable, and re-dissolvable polysiloxane elastomer for recyclable flexible devices. Journal of Materials Chemistry A, 2022, 10, 11019-11029.	10.3	17
119	Graft Polymerization of Vinyl Monomers onto Nanosized Silicon Carbide Particles. Polymers and Polymer Composites, 2002, 10, 531-540.	1.9	16
120	Performance stabilization of conductive polymer composites. Journal of Applied Polymer Science, 2003, 89, 2438-2445.	2.6	16
121	Fabrication of Nanoparticle/Polymer Composites by In Situ Bubble-Stretching and Reactive Compatibilization. Macromolecular Chemistry and Physics, 2006, 207, 2093-2102.	2.2	16
122	A facile and scalable process to synthesize flexible lithium ion conductive glass-ceramic fibers. RSC Advances, 2019, 9, 4157-4161.	3.6	16
123	Carbon black-filled polyolefins as positive temperature coefficient materials: The effect ofin situ grafting during melt compounding. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 127-134.	2.1	15
124	Gas Sensing Materials from Carbon Black/Poly(Methyl Methacrylate) Composites. Polymers and Polymer Composites, 2003, 11, 291-299.	1.9	15
125	Molecular chain bonding synthesis of nanoporous, flexible and conductive polymer composite with outstanding performance for supercapacitors. Journal of Materials Chemistry A, 2016, 4, 10091-10097.	10.3	15
126	Implementation of the Pulley Effect of Polyrotaxane in Transparent Bulk Polymer for Simultaneous Strengthening and Toughening. Macromolecular Rapid Communications, 2020, 41, e2000371.	3.9	15

#	Article	IF	CITATIONS
127	Effects of liquid crystalline polyurethane on the structure and properties of epoxy. Journal of Materials Science Letters, 2002, 21, 719-722.	0.5	14
128	Mechanical Properties of Nanocomposites from Ball Milling Grafted Nano-Silica/Polypropylene Block Copolymer. Polymers and Polymer Composites, 2004, 12, 257-268.	1.9	14
129	A Comparative Study of Nanosilica/Poly(propylene) Composites Prepared by Reactive Compatibilization. Macromolecular Chemistry and Physics, 2008, 209, 1826-1835.	2.2	14
130	Interfacial effects in short sisal fiber/maleated castor oil foam composites. Composite Interfaces, 2008, 15, 95-110.	2.3	14
131	Toughness of ABS/PBT blends: The relationship between composition, morphology, and fracture behavior. Journal of Applied Polymer Science, 2018, 135, 46051.	2.6	14
132	Enhanced flame retardancy of epoxy resin containing a phenethyl-bridged DOPO derivative/montmorillonite compound. Journal of Fire Sciences, 2018, 36, 47-62.	2.0	14
133	Activation-free fabrication of high-surface-area porous carbon nanosheets from conjugated copolymers. Chemical Communications, 2018, 54, 11431-11434.	4.1	14
134	Ultrathin-graphite foam with high mechanical resilience and electroconductibility fabricated through morphology-controlled solid-state pyrolysis of polyaniline foam. Carbon, 2018, 139, 648-655.	10.3	14
135	All-Plant Fibre Composites: Self Reinforced Composites Based on Sisal. Advanced Composites Letters, 2001, 10, 096369350101000.	1.3	13
136	Novel flame retardancy effect of phenethyl-bridged DOPO derivative on epoxy resin. High Performance Polymers, 2018, 30, 667-676.	1.8	13
137	3D N-doped carbon framework with embedded CoS nanoparticles as highly active and durable oxygen reduction and evolution electrocatalyst. Nanotechnology, 2018, 29, 465402.	2.6	13
138	Highly conductive doped carbon framework as binder-free cathode for hybrid Li-O2 battery. Carbon, 2019, 142, 177-189.	10.3	13
139	Facile synthesis of copper selenides with different stoichiometric compositions and their thermoelectric performance at a low temperature range. RSC Advances, 2021, 11, 25955-25960.	3.6	13
140	Self-healing and reprocessing of transparent UV-cured polysiloxane elastomer. Progress in Organic Coatings, 2021, 159, 106450.	3.9	13
141	Thermal stability of frictional surface layer and wear debris of epoxy nanocomposites in relation to the mechanism of tribological performance improvement. Journal of Materials Science, 2004, 39, 3817-3820.	3.7	12
142	Effect of Soft Segments of Waterborne Polyurethane on Organic Vapor Sensitivity of Carbon Black Filled Waterborne Polyurethane Composites. Polymer Journal, 2006, 38, 799-806.	2.7	12
143	Enhancement of intrinsic thermal conductivity of liquid crystalline epoxy through the strategy of interlocked polymer networks. Materials Chemistry Frontiers, 2022, 6, 1137-1149.	5.9	12
144	Heat treatment-induced multiple melting behavior of carbon black-filled polymer blends in relation to the conductive performance stabilization. Journal of Applied Polymer Science, 2001, 80, 1267-1273.	2.6	11

#	Article	IF	CITATIONS
145	Effects of Processing on Electric Response of Carbon Black Filled Poly(methyl methacrylate) Composites against Organic Solvent Vapors. Polymer Journal, 2003, 35, 1003-1008.	2.7	11
146	Deformation Characteristics of Nano-SiO ₂ Filled Polypropylene Composites. Polymers and Polymer Composites, 2003, 11, 559-562.	1.9	11
147	Reversible surface wettability conversion of graphene films: optically controlled mechanism. Journal of Materials Science, 2014, 49, 3025-3033.	3.7	11
148	Moisture Battery Formed by Direct Contact of Magnesium with Foamed Polyaniline. Angewandte Chemie, 2016, 128, 1837-1841.	2.0	11
149	Controllable Depolymerization and Recovery of Interlocked Covalent Adaptable Networks via Cascading Reactions of the Built-In Reversible Bonds. Macromolecules, 2022, 55, 262-269.	4.8	11
150	Polyurethane/Polyolefin Blends: Morphology, Compatibilization and Mechanical Properties. Polymers and Polymer Composites, 2006, 14, 1-11.	1.9	10
151	Analysis of gas sensing behaviors of carbon black/waterborne polyurethane composites in low concentration organic vapors. Journal of Materials Science, 2007, 42, 4575-4580.	3.7	10
152	Influence of Compatibilizer on Morphology and Dynamic Rheological Behavior of Polyethylene-Octene Elastomer/Starch Blends. International Journal of Polymeric Materials and Polymeric Biomaterials, 2008, 57, 362-373.	3.4	10
153	Bridging Redox Species-Coated Graphene Oxide Sheets to Electrode for Extending Battery Life Using Nanocomposite Electrolyte. ACS Applied Materials & Interfaces, 2017, 9, 909-918.	8.0	10
154	The critical role of inter-component hydrogen bonds in the formation of reversibly interlocked polymer networks. Materials Chemistry Frontiers, 2021, 6, 52-62.	5.9	10
155	Ionic Thermoelectric Effect Inducing Cationâ€Enriched Surface of Hydrogel to Enhance Output Performance of Triboelectric Nanogenerator. Energy Technology, 2022, 10, .	3.8	10
156	A biomaterial-based carbon fiber. Angewandte Makromolekulare Chemie, 1994, 222, 147-163.	0.2	9
157	Time dependent percolation of carbon black filled polymer composites in response to solvent vapor. Journal of Materials Science, 2005, 40, 2065-2068.	3.7	9
158	Grafting of Poly(glycidyl methacrylate) onto Nano-SiO2 and Its Reactivity in Polymers. Polymer Journal, 2005, 37, 677-685.	2.7	9
159	Dynamic rheological and morphological study of the compatibility of thermoplastic polyurethane/ethylene–octene copolymer blends. Journal of Applied Polymer Science, 2008, 109, 3452-3457.	2.6	9
160	Ethylene vinyl acetate films filled with ytterbium containing rare earth particles (Y ₂ SiO ₅ : Ce ³⁺ , Yb ³⁺) which have optical down-conversion capabilities and useful for encapsulating solar cells. Journal of Plastic Film and Sheeting, 2015, 31, 233-247.	2.2	9
161	Improvement of multiple-responsive shape memory effects of wool through increasing the content of disulfide bonds. Polymer, 2020, 188, 122130.	3.8	9
162	Temperature-dependence of dynamic rheological properties for high-density polyethylene filled with graphite. Journal of Materials Science, 2005, 40, 3539-3541.	3.7	8

#	Article	IF	CITATIONS
163	Self-healing epoxy with a fast and stable extrinsic healing system based on BF3–amine complex. RSC Advances, 2016, 6, 100796-100803.	3.6	8
164	Antigen uptake and immunoadjuvant activity of pathogen-mimetic hollow silica particles conjugated with l²-glucan. Journal of Materials Chemistry B, 2018, 6, 6288-6301.	5.8	8
165	Nanopore separator of cross-linked poly(propylene glycol)- <i>co</i> -pentaerythritol triacrylate for effectively suppressing polysulfide shuttling in Li–S batteries. Polymer Chemistry, 2019, 10, 2697-2705.	3.9	8
166	Photo-induced topological self-reorganization and self-growth of polymer based on dynamic reversible aromatic pinacol units. Polymer, 2020, 192, 122299.	3.8	8
167	Title is missing!. Journal of Materials Science Letters, 1999, 18, 1861-1864.	0.5	7
168	Quantitative description of aggregation and dissociation of poly (vinyl methyl ether)/poly (2-ethyl-2-oxazoline) chains in water by novel elastic light scattering spectroscopy. Polymer Bulletin, 2014, 71, 243-260.	3.3	7
169	Studies on solid-state polymer composite electrolyte of nano-silica/hyperbranched poly(amine-ester). Journal of Solid State Electrochemistry, 2016, 20, 1845-1854.	2.5	7
170	Flexible Quasi-Solid-State Composite Electrolyte of Poly (Propylene Glycol)-co-Pentaerythritol Triacry-Late/Li1.5Al0.5Ge1.5(PO4)3 for High-Performance Lithium-Sulfur Battery. Materials, 2021, 14, 1979.	2.9	7
171	A novel strategy for producing highâ€performance continuous regenerated fibers with woolâ€like structure. SusMat, 2022, 2, 90-103.	14.9	7
172	Interfacial interaction in stainless steel fiber-filled polypropylene composites. Journal of Applied Polymer Science, 2000, 78, 2174-2179.	2.6	6
173	Thermally induced performance decay in conductive polymer composites. Polymer Composites, 2004, 25, 270-279.	4.6	6
174	In situ melt grafting in carbon black/polyolefin composites and its influence on conductive performance. Polymer International, 2004, 53, 944-950.	3.1	6
175	Optical properties of synthesized organic nanowires. Applied Physics Letters, 2006, 89, 241121.	3.3	6
176	Dynamic rheological behavior and morphology of poly(trimethylene terephthalate)/poly(ethylene) Tj ETQq0 0 0 0	rgBT /Over	lock 10 Tf 50
177	Strategy of fabrication of controlled thermosetting gel based on soybean oil towards supercritical carbon dioxide foaming. Green Chemistry, 2014, 16, 1225-1235.	9.0	6
178	UV urable Polyurethane Elastomer with UVâ€Irradiation/Thermo Dualâ€Activated Selfâ€Healability. Macromolecular Materials and Engineering, 2022, 307, .	3.6	6
179	Mechanical enhancement mechanism of interlocked polymer networks. Materials Today Physics, 2022, 27, 100768.	6.0	6
180	The elastic constants of moulded polymeric composites. Angewandte Makromolekulare Chemie, 1992, 198, 39-49.	0.2	5

#	Article	IF	CITATIONS
181	Effect of a China-made poly(aryl-ether-ketone) on the crystallization kinetics of poly(1,4-phenylene) Tj ETQq1 1	0.784314	rgBT /Overloc
182	Young's modulus of transcrystallinities in semicrystalline thermoplastic composites. Journal of Applied Polymer Science, 1994, 54, 541-551.	2.6	5
183	Nanostructured Silver/Polystyrene Composite Film: Preparation and Ultrafast Third-Order Optical Nonlinearity. Polymers and Polymer Composites, 2002, 10, 291-298.	1.9	5
184	Enzyme degradability of benzylated sisal and its self-reinforced composites. Polymers for Advanced Technologies, 2003, 14, 676-685.	3.2	5
185	Performance Improvement of Nano-silica/Polypropylene Composites through in-situ Graft Modification of Nanoparticles during Melt Compounding. E-Polymers, 2007, 7, .	3.0	5
186	Manipulation of the phase structure of vinyl-functionalized phenylene bridging periodic mesoporous organosilica. Journal of Sol-Gel Science and Technology, 2012, 64, 718-727.	2.4	5
187	Friction and Wear of Epoxy Composites Containing Silica Nanoparticles Grafted by Hyperbranched Aromatic Polyamide. Polymers and Polymer Composites, 2012, 20, 673-682.	1.9	5
188	Title is missing!. Die Makromolekulare Chemie, 1991, 192, 293-299.	1.1	4
189	Dynamic viscoelasticity of low-density polyethylene/in-situ-grafted carbon black composite. Journal of Applied Polymer Science, 2006, 100, 4127-4132.	2.6	4
190	Surface functionalization of Si3N4 nanoparticles by graft polymerization of glycidyl methacrylate and styrene. Journal of Applied Polymer Science, 2006, 102, 992-999.	2.6	4
191	Localized compatibilization in immiscible blends of thermoplastic polyurethane and ethylene-octylene copolymer. Journal of Applied Polymer Science, 2007, 105, 1309-1315.	2.6	4
192	Self-Healing Polymers and Polymer Composites. , 0, , 29-71.		4
193	Enthalpy Relaxation in Poly(aryl ether ketone bearing phthalidylidene group). Polymer Journal, 1993, 25, 541-543.	2.7	3
194	Electrical resistance response of poly(ethylene oxide)-based conductive composites to organic vapors: Effect of filler content, vapor species, and temperature. Journal of Applied Polymer Science, 2005, 98, 1517-1523.	2.6	3
195	Competition Between Motion Constraint and Aggregation of Macromolecular Chains in Poly(vinyl) Tj ETQq1 1 Chemistry and Physics, 2012, 213, 1735-1741.	0.784314 r 2.2	rgBT /Overloci 3
196	Competitive mechanism of poly(ethylene glycol) with poly(vinyl methyl ether) in complexing water molecules revealed with elastic light scattering spectroscopy. Polymer Bulletin, 2012, 68, 425-440.	3.3	3
197	Self-healing of thermally molded commodity plastics based on heat-resistant and anti-aging healing systems. RSC Advances, 2016, 6, 93410-93418.	3.6	3
198	Stepless shape morphing polymer. SmartMat, 2023, 4, .	10.7	3

#	Article	IF	CITATIONS
199	Interfacial phenomena in polymer based PTC material. Composite Interfaces, 1998, 6, 275-285.	2.3	2
200	Solvent-induced crystallization in polyetheretherketone exposed to methylene chloride?during solvent sorption or during solvent desorption?. Journal of Applied Polymer Science, 1999, 74, 3376-3379.	2.6	2
201	Organic vapor sensibility of carbon black/polyethylene wax composites. Journal of Materials Science, 2004, 39, 5617-5620.	3.7	2
202	Compatibility Study of Polyamide 6/Polyvinylpyprrolidone Blend by Viscometry, Melting Point Depression and Morphological Analysis. Polymers and Polymer Composites, 2008, 16, 627-633.	1.9	2
203	Synthesis and characterization of nanoâ€modified permeability membrane. Polymers for Advanced Technologies, 2015, 26, 1346-1350.	3.2	2
204	Synthesis of novel hierarchical porous polymers with a nanowire-interconnected network structure from core-shell polymer nanoobjects. Science China Chemistry, 2017, 60, 1084-1089.	8.2	2
205	Structure aspects of interfacial stress transfer in a fiber/thermoplastic composite. Journal of Materials Science Letters, 2000, 19, 837-839.	0.5	1
206	Highly Filled Nano-CdS/Polystyrene Nanocomposite Film with Self-Organization Behavior. Polymers and Polymer Composites, 2003, 11, 441-448.	1.9	1
207	Organic Vapour Sensor from Carbon Black Filled Amorphous Polymer Composite: Effects of Processing, Carbon Fibres and Irradiation. Polymers and Polymer Composites, 2005, 13, 213-221.	1.9	1
208	Tribological Behaviours of Epoxy Composites Filled with Silicon Carbide Nanoparticles. Advanced Composites Letters, 2007, 16, 096369350701600.	1.3	1
209	Reply to the â€~Comment on "Observation of mutual diffusion of macromolecules in PS/PMMA binary films by confocal Raman microscopyâ€â€™ by J. Pablo Tomba, Soft Matter, 2016, 12 , DOI: 10.1039/C5SM02735G. Soft Matter, 2016, 12, 4514-4515.	2.7	1
210	Preparation of a water soluble aminated βâ€1, <scp>3â€D</scp> â€glucan for gene carrier: The in vitro study of the antiâ€inflammatory activity and transfection efficiency. Journal of Biomedical Materials Research - Part A, 2021, 109, 2506-2515.	4.0	1
211	Percolation and Gas Sensing Behaviours of Ternary Conductive Composites: Vapour-Grown Carbon Fibres/Carbon Black/Poly(Methyl Methacrylate). Advanced Composites Letters, 2003, 12, 096369350301200.	1.3	0