
Biljana Sljukic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7277957/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Steps towards highly-efficient water splitting and oxygen reduction using nanostructured β-Ni(OH) ₂ . RSC Advances, 2022, 12, 10020-10028.	3.6	5
2	Boosting electrocatalysis of oxygen reduction and evolution reactions with cost-effective cobalt and nitrogen-doped carbons prepared by simple carbonization of ionic liquids. International Journal of Hydrogen Energy, 2022, 47, 14847-14858.	7.1	7
3	Boosting oxygen electrode kinetics by addition of cost-effective transition metals (Ni, Fe, Cu) to platinum on graphene nanoplatelets. Journal of Alloys and Compounds, 2022, 905, 164156.	5.5	8
4	Sodium-pillared vanadium oxides as next-gen materials: Does co-inserted water control the cyclic stability of vanadates in an aqueous electrolyte?. Electrochimica Acta, 2022, 425, 140603.	5.2	2
5	Benzimidazole Schiff base copper(II) complexes as catalysts for environmental and energy applications: VOC oxidation, oxygen reduction and water splitting reactions. International Journal of Hydrogen Energy, 2022, 47, 23175-23190.	7.1	8
6	Platinum–Dysprosium Alloys as Oxygen Electrodes in Alkaline Media: An Experimental and Theoretical Study. Nanomaterials, 2022, 12, 2318.	4.1	1
7	A Pt/MnV2O6 nanocomposite for the borohydride oxidation reaction. Journal of Energy Chemistry, 2021, 55, 428-436.	12.9	8
8	Direct borohydride fuel cells (DBFCs). , 2021, , 203-232.		5
9	Enhanced borohydride oxidation kinetics at gold-rare earth alloys. Journal of Alloys and Compounds, 2021, 857, 158273.	5.5	9
10	Tailoring metal-oxide-supported PtNi as bifunctional catalysts of superior activity and stability for unitised regenerative fuel cell applications. Electrochemistry Communications, 2021, 124, 106963.	4.7	22
11	Carbon-Supported Trimetallic Catalysts (PdAuNi/C) for Borohydride Oxidation Reaction. Nanomaterials, 2021, 11, 1441.	4.1	8
12	Full-Self-Powered Humidity Sensor Based on Electrochemical Aluminum–Water Reaction. Sensors, 2021, 21, 3486.	3.8	4
13	Ionic Liquid-Derived Carbon-Supported Metal Electrocatalysts as Anodes in Direct Borohydride-Peroxide Fuel Cells. Catalysts, 2021, 11, 632.	3.5	4
14	Impact of Mixing on the Structural Diversity of Serbian Spruce and Macedonian Pine Endemic to Relict Forest Communities in the Balkan Peninsula. Forests, 2021, 12, 1095.	2.1	2
15	Highly efficient and fast batch adsorption of orange G dye from polluted water using superb organo-montmorillonite: Experimental study and molecular dynamics investigation. Journal of Molecular Liquids, 2021, 335, 116560.	4.9	58
16	Tailoring gold-conducting polymer nanocomposites for sensors applications: Proof of concept for As(III) sensing in aqueous media. Synthetic Metals, 2021, 278, 116834.	3.9	8
17	Corrigendum to: "Bimetallic PdM (M: Fe, Ag, Au) alloy nanoparticles assembled on reduced graphene oxide as catalysts for direct borohydride fuel cells―[J. Alloy. Compd. 718 (2017) 204–214]. Journal of Alloys and Compounds, 2021, 884, 161309.	5.5	0
18	Bimetallic Co-Based (CoM, M = Mo, Fe, Mn) Coatings for High-Efficiency Water Splitting. Materials, 2021. 14. 92.	2.9	19

#	Article	IF	CITATIONS
19	Advanced Materials for Electrochemical Energy Conversion and Storage Devices. Materials, 2021, 14, 7711.	2.9	6
20	Palladium-nickel on tin oxide-carbon composite supports for electrocatalytic hydrogen evolution. Catalysis Today, 2020, 357, 302-310.	4.4	6
21	Mesoporous graphitic carbon nitride-supported binary MPt (M: Co, Ni, Cu) nanoalloys as electrocatalysts for borohydride oxidation and hydrogen evolution reaction. Catalysis Today, 2020, 357, 291-301.	4.4	26
22	Ruthenium(0) nanoparticles stabilized by metal-organic framework as an efficient electrocatalyst for borohydride oxidation reaction. International Journal of Hydrogen Energy, 2020, 45, 27056-27066.	7.1	5
23	Versatility of Amide-Functionalized Co(II) and Ni(II) Coordination Polymers: From Thermochromic-Triggered Structural Transformations to Supercapacitors and Electrocatalysts for Water Splitting. Inorganic Chemistry, 2020, 59, 16301-16318.	4.0	19
24	Electroanalytical sensing of trace amounts of As(III) in water resources by Gold–Rare Earth alloys. Journal of Electroanalytical Chemistry, 2020, 872, 114232.	3.8	4
25	Carbon-Supported Mo2C for Oxygen Reduction Reaction Electrocatalysis. Nanomaterials, 2020, 10, 1805.	4.1	9
26	Performance of Au/Ti and Au/TiO 2 Nanotube Array Electrodes for Borohydride Oxidation and Oxygen Reduction Reaction in Alkaline Media. Electroanalysis, 2020, 32, 1867-1874.	2.9	4
27	Simple design of PVA-based blend doped with SO4(PO4)-functionalised TiO2 as an effective membrane for direct borohydride fuel cells. International Journal of Hydrogen Energy, 2020, 45, 15226-15238.	7.1	28
28	Mn2O3-MO (MO = ZrO2, V2O5, WO3) supported PtNi nanoparticles: Designing stable and efficient electrocatalysts for oxygen reduction and borohydride oxidation. Microporous and Mesoporous Materials, 2019, 273, 286-293.	4.4	19
29	Evaluation of silver-incorporating zeolites as bifunctional electrocatalysts for direct borohydride fuel cells. New Journal of Chemistry, 2019, 43, 14270-14280.	2.8	7
30	Gold nanorod-polyaniline composites: Synthesis and evaluation as anode electrocatalysts for direct borohydride fuel cells. Electrochimica Acta, 2019, 328, 135115.	5.2	20
31	PdNi alloy nanoparticles assembled on cobalt ferrite-carbon black composite as a fuel cell catalyst. International Journal of Hydrogen Energy, 2019, 44, 14193-14200.	7.1	16
32	Poly(vinyl alcohol)-based crosslinked ternary polymer blend doped with sulfonated graphene oxide as a sustainable composite membrane for direct borohydride fuel cells. Journal of Power Sources, 2019, 432, 92-101.	7.8	54
33	The influence of oxygen vacancy concentration in nanodispersed non-stoichiometric CeO2-δ oxides on the physico-chemical properties of conducting polyaniline/CeO2 composites. Electrochimica Acta, 2019, 306, 506-515.	5.2	11
34	The Electrochemical Society Custom-Made Bromide-Based Ionic Liquids as Electrolyte Additives for Enhancing Hydrogen Evolution in Alkaline Water Electrolysis. Journal of the Electrochemical Society, 2019, , .	2.9	1
35	Electrochemical investigation of ionic liquid-derived porous carbon materials for supercapacitors: pseudocapacitance versus electrical double layer. Electrochimica Acta, 2019, 298, 541-551.	5.2	32
36	Electrochemistry of hydrogen evolution in ionic liquids aqueous mixtures. Materials Research Bulletin, 2019, 112, 407-412.	5.2	17

#	Article	IF	CITATIONS
37	Performance assessment of a direct borohydride-peroxide fuel cell with Pd-impregnated faujasite X zeolite as anode electrocatalyst. Electrochimica Acta, 2018, 269, 517-525.	5.2	32
38	Monodisperse Pd nanoparticles assembled on reduced graphene oxide-Fe 3 O 4 nanocomposites asÂelectrocatalysts for borohydride fuel cells. International Journal of Hydrogen Energy, 2018, 43, 10686-10697.	7.1	21
39	Electrocatalytic Activity of Ionic‣iquidâ€Derived Porous Carbon Materials for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1037-1046.	3.4	22
40	PtNi supported on binary metal oxides: Potential bifunctional electrocatalysts for low-temperature fuel cells?. Applied Surface Science, 2018, 428, 31-40.	6.1	15
41	Efficient hydrogen evolution electrocatalysis in alkaline medium using Pd-modified zeolite X. Electrochimica Acta, 2018, 259, 882-892.	5.2	27
42	12-phosphotungstic Acid Supported on BEA Zeolite Composite with Carbonized Polyaniline for Electroanalytical Sensing of Phenols in Environmental Samples. Journal of the Electrochemical Society, 2018, 165, H1013-H1020.	2.9	11
43	Reduced Graphene Oxide-Supported Bimetallic M-Platinum (M: Co, Ni, Cu) Alloy Nanoparticles for Hydrogen Evolution Reaction. ECS Transactions, 2018, 86, 701-710.	0.5	3
44	The Impact of Bromide-based Ionic Liquids on Alkaline Water Electrolysis. ECS Transactions, 2018, 86, 711-717.	0.5	1
45	Facile Preparation and High Activity of TiO2 Nanotube Arrays toward Oxygen Reduction in Alkaline Media. Journal of the Electrochemical Society, 2018, 165, J3253-J3258.	2.9	5
46	NiA and NiX zeolites as bifunctional electrocatalysts for water splitting in alkaline media. International Journal of Hydrogen Energy, 2018, 43, 18977-18991.	7.1	15
47	Platinum/polypyrrole-carbon electrocatalysts for direct borohydride-peroxide fuel cells. Applied Catalysis B: Environmental, 2018, 238, 454-464.	20.2	76
48	On the stability in alkaline conditions and electrochemical performance of A ₂ BO ₄ -type cathodes for liquid fuel cells. Physical Chemistry Chemical Physics, 2018, 20, 19045-19056.	2.8	11
49	Vine Shoots and Grape Stalks as Carbon Sources for Hydrogen Evolution Reaction Electrocatalyst Supports. Catalysts, 2018, 8, 50.	3.5	8
50	Toward Tailoring of Electrolyte Additives for Efficient Alkaline Water Electrolysis: Salicylate-Based Ionic Liquids. ACS Applied Energy Materials, 2018, 1, 4731-4742.	5.1	8
51	SnO2-C supported PdNi nanoparticles for oxygen reduction and borohydride oxidation. Journal of Electroanalytical Chemistry, 2017, 797, 23-30.	3.8	20
52	Bimetallic PdM (MÂ=ÂFe, Ag, Au) alloy nanoparticles assembled on reduced graphene oxide as catalysts for direct borohydride fuel cells. Journal of Alloys and Compounds, 2017, 718, 204-214.	5.5	66
53	Room Temperature Ionic Liquids as Electrolyte Additives for the HER in Alkaline Media. Journal of the Electrochemical Society, 2017, 164, F427-F432.	2.9	20
54	Organic Electrosynthesis: From Laboratorial Practice to Industrial Applications. Organic Process Research and Development, 2017, 21, 1213-1226.	2.7	172

#	Article	IF	CITATIONS
55	Electroanalytical Sensing of Bromides Using Radiolytically Synthesized Silver Nanoparticle Electrocatalysts. Journal of Analytical Methods in Chemistry, 2017, 2017, 1-9.	1.6	3
56	Molybdenum Carbide Nanoparticles on Carbon Nanotubes and Carbon Xerogel: Lowâ€Cost Cathodes for Hydrogen Production by Alkaline Water Electrolysis. ChemSusChem, 2016, 9, 1200-1208.	6.8	56
57	Radiolitically synthesized nano Ag/C catalysts for oxygen reduction and borohydride oxidation reactions in alkaline media, for potential applications in fuel cells. Energy, 2016, 101, 79-90.	8.8	50
58	Effect of RTILs on the Hydrogen Evolution Reaction in Alkaline Media. ECS Transactions, 2016, 72, 23-29.	0.5	1
59	PtNi-Decorated Metal Oxide Electrodes for Borohydride Fuel Cells. ECS Transactions, 2016, 72, 57-64.	0.5	0
60	Nickel-Rare Earth (RE = Ce, Sm, Dy) Electrodes for H2O2 Reduction in Fuel Cells. ECS Transactions, 2016, 72, 31-40.	0.5	2
61	Composite zeolite/carbonized polyaniline electrodes for p–nitrophenol sensing. Journal of Electroanalytical Chemistry, 2016, 778, 137-147.	3.8	14
62	Pd/c-PANI electrocatalysts for direct borohydride fuel cells. Electrochimica Acta, 2016, 213, 298-305.	5.2	55
63	On the performance of commercially available corrosion-resistant nickel alloys: a review. Corrosion Reviews, 2016, 34, 187-200.	2.0	27
64	Biobased carbon-supported palladium electrocatalysts for borohydride fuel cells. International Journal of Hydrogen Energy, 2016, 41, 10914-10922.	7.1	26
65	Platinum-rare earth cathodes for direct borohydride-peroxide fuel cells. Journal of Power Sources, 2016, 307, 251-258.	7.8	28
66	Nickel–rare earth electrodes for sodium borohydride electrooxidation. Electrochimica Acta, 2016, 190, 1050-1056.	5.2	45
67	Nanostructured 3D metallic foams for H2O2 electroreduction. International Journal of Hydrogen Energy, 2016, 41, 14370-14376.	7.1	22
68	Glass-like carbon, pyrolytic graphite or nanostructured carbon for electrochemical sensing of bismuth ion?. Processing and Application of Ceramics, 2016, 10, 87-95.	0.8	2
69	Three-dimensional nanostructured Ni–Cu foams for borohydride oxidation. Russian Journal of Physical Chemistry A, 2015, 89, 2449-2454.	0.6	23
70	Enhancement of hydrogen evolution in alkaline water electrolysis by using nickel-rare earth alloys. International Journal of Hydrogen Energy, 2015, 40, 4295-4302.	7.1	86
71	Carbon-supported Mo ₂ C electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 15505-15512.	10.3	85
72	THE INFLUENCE OF INTERCALATED IONS ON CYCLIC STABILITY OF V2O5/GRAPHITE COMPOSITE IN AQUEOUS ELECTROLYTIC SOLUTIONS: EXPERIMENTAL AND THEORETICAL APPROACH. Electrochimica Acta, 2015, 176, 130-140.	5.2	25

#	Article	IF	CITATIONS
73	Perovskite cathodes for NaBH 4 /H 2 O 2 direct fuel cells. Electrochimica Acta, 2015, 178, 163-170.	5.2	21
74	Analysis of the growth characteristics of a 450-year-old silver fir tree. Archives of Biological Sciences, 2015, 67, 155-160.	0.5	2
75	Investigation of Nickel-Rare Earth Electrodes for Sodium Borohydride Electrooxidation. ECS Transactions, 2014, 64, 1095-1102.	0.5	2
76	La ₂ NiO ₄ Ceramic Electrodes for Hydrogen Peroxide Electroreduction. ECS Transactions, 2014, 64, 1049-1057.	0.5	3
77	Nickel and Nickel-Cerium Alloy Anodes for Direct Borohydride Fuel Cells. Journal of the Electrochemical Society, 2014, 161, F594-F599.	2.9	41
78	Electrocatalytic performance of Pt–Dy alloys for direct borohydride fuel cells. Journal of Power Sources, 2014, 272, 335-343.	7.8	71
79	Electrocatalytic Activity of Nickel-Cerium Alloys for Hydrogen Evolution in Alkaline Water Electrolysis. Journal of the Electrochemical Society, 2014, 161, F386-F390.	2.9	44
80	Electrocatalytic Activity of Carbonized Nanostructured Polyanilines for Oxidation Reactions: Sensing of Nitrite Ions and Ascorbic Acid. Electrochimica Acta, 2014, 120, 147-158.	5.2	28
81	Landscape character of Mladenovac: Value preservation by applying connectivity principle. Zbornik Radova - Geografski Fakultet Univerziteta U Beogradu, 2014, , 91-120.	0.2	1
82	Physics of Electrolytic Gas Evolution. Brazilian Journal of Physics, 2013, 43, 199-208.	1.4	66
83	Analytical monitoring of sodium borohydride. Analytical Methods, 2013, 5, 829.	2.7	32
84	Carbon-supported Pt0.75M0.25 (M = Ni or Co) electrocatalysts for borohydride oxidation. Electrochimica Acta, 2013, 107, 577-583.	5.2	60
85	Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: Proof-of-concept using platinumdysprosium alloys. Energy, 2013, 50, 486-492.	8.8	54
86	Manganese dioxide electrocatalysts for borohydride fuel cell cathodes?. Journal of Electroanalytical Chemistry, 2013, 694, 77-83.	3.8	25
87	Nickel-Cerium Electrodes for Hydrogen Evolution in Alkaline Water Electrolysis. ECS Transactions, 2013, 58, 113-121.	0.5	6
88	Nanostructured materials for sensing Pb(II) and Cd(II) ions: Manganese oxohydroxide versus carbonized polyanilines?. Journal of the Serbian Chemical Society, 2013, 78, 1717-1727.	0.8	8
89	Nickel-Cerium Alloys for Borohydride Oxidation. ECS Transactions, 2013, 58, 1893-1901.	0.5	1
90	Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?. Membranes, 2012, 2, 478-492.	3.0	26

#	Article	IF	CITATIONS
91	Adsorption of bismuth ions on graphite chemically modified with gallic acid. Physical Chemistry Chemical Physics, 2012, 14, 10027.	2.8	7
92	Simultaneous oxidation of aniline and tannic acid with peroxydisulfate: Self-assembly of oxidation products from nanorods to microspheres. Synthetic Metals, 2012, 162, 843-856.	3.9	17
93	Electrochemical behaviour of carbon supported Pt electrocatalysts for H2O2 reduction. International Journal of Hydrogen Energy, 2012, 37, 14143-14151.	7.1	44
94	Exploration of MnO2/carbon composites and their application to simultaneous electroanalytical determination of Pb(II) and Cd(II). Electrochimica Acta, 2012, 74, 158-164.	5.2	34
95	Disposable manganese oxide screen printed electrodes for electroanalytical sensing. Analytical Methods, 2011, 3, 105-109.	2.7	21
96	Hydrogen peroxide sensing at MnO2/carbonized nanostructured polyaniline electrode. Russian Journal of Physical Chemistry A, 2011, 85, 2406-2409.	0.6	11
97	Electrochemistry in Room-Temperature Ionic Liquids: Potential Windows at Mercury Electrodes. Journal of Chemical & Engineering Data, 2009, 54, 2049-2053.	1.9	88
98	Electrochemical Determination of Manganese Solubility in Mercury via Amalgamation and Stripping in the Room Temperature Ionic Liquid <i>n</i> â€Hexyltriethylammonium Bis(trifluoromethanesulfonyl)imide, [N _{6,2,2,2}][NTf ₂]. Electroanalysis, 2008, 20, 2603-2607.	2.9	2
99	Manganese Dioxide Graphite Composite Electrodes: Application to the Electroanalysis of Hydrogen Peroxide, Ascorbic Acid and Nitrite. Analytical Sciences, 2007, 23, 165-170.	1.6	60
100	Lead(IV) oxide–graphite composite electrodes: Application to sensing of ammonia, nitrite and phenols. Analytica Chimica Acta, 2007, 587, 240-246.	5.4	66
101	Copper Oxide – Graphite Composite Electrodes: Application to Nitrite Sensing. Electroanalysis, 2007, 19, 79-84.	2.9	63
102	Development of an Electrochemical Sensor Nanoarray for Hydrazine Detection Using a Combinatorial Approach. Electroanalysis, 2007, 19, 1062-1068.	2.9	52
103	Electrochemical Determination of Oxalate at Pyrolytic Graphite Electrodes. Electroanalysis, 2007, 19, 918-922.	2.9	29
104	Manganese Dioxide Graphite Composite Electrodes Formed via a Low Temperature Method: Detection of Hydrogen Peroxide, Ascorbic Acid and Nitrite. Electroanalysis, 2007, 19, 1275-1280.	2.9	46
105	At point of use sono-electrochemical generation of hydrogen peroxide for chemical synthesis: The green oxidation of benzonitrile to benzamide. Ultrasonics Sonochemistry, 2007, 14, 113-116.	8.2	12
106	Electrosynthesis of hydrogen peroxide via the reduction of oxygen assisted by power ultrasound. Ultrasonics Sonochemistry, 2007, 14, 405-412.	8.2	37
107	Combinatorial electrochemistry using metal nanoparticles: From proof-of-concept to practical realisation for bromide detection. Analytica Chimica Acta, 2007, 590, 67-73.	5.4	25
108	Electrochemical detection of arsenic on a gold nanoparticle array. Russian Journal of Physical Chemistry A, 2007, 81, 1443-1447.	0.6	33

#	Article	IF	CITATIONS
109	The thermodynamics of sequestration of toxic copper(ii) metal ion pollutants from aqueous media by l-cysteine methyl ester modified glassy carbon spheres. Journal of Materials Chemistry, 2006, 16, 970.	6.7	29
110	Electrochemically polymerised composites of multi-walled carbon nanotubes and poly(vinylferrocene) and their use as modified electrodes: Application to glucose sensing. Analyst, The, 2006, 131, 670-677.	3.5	67
111	Iron Oxide Particles Are the Active Sites for Hydrogen Peroxide Sensing at Multiwalled Carbon Nanotube Modified Electrodes. Nano Letters, 2006, 6, 1556-1558.	9.1	373
112	Screen Printed Electrodes and Screen Printed Modified Electrodes Benefit from Insonation. Electroanalysis, 2006, 18, 928-930.	2.9	15
113	Iron(III) Oxide Graphite Composite Electrodes: Application to the Electroanalytical Detection of Hydrazine and Hydrogen Peroxide. Electroanalysis, 2006, 18, 1757-1762.	2.9	83
114	Mathematical Modelling and Simulation of Adsorption Processes at Spherical Microparticles. ChemPhysChem, 2006, 7, 697-703.	2.1	5
115	An overview of the electrochemical reduction of oxygen at carbon-based modified electrodes. Journal of the Iranian Chemical Society, 2005, 2, 1-25.	2.2	173
116	Exploration of Stable Sonoelectrocatalysis for the Electrochemical Reduction of Oxygen. Electroanalysis, 2005, 17, 1025-1034.	2.9	24
117	Body Ni-Doped Glassy Carbon: Physical and Electrochemical Characterization. Materials Science Forum, 2004, 453-454, 103-108.	0.3	1
118	Modification of carbon electrodes for oxygen reduction and hydrogen peroxide formation: The search for stable and efficient sonoelectrocatalysts. Physical Chemistry Chemical Physics, 2004, 6, 992-997.	2.8	50
119	The search for stable and efficient sonoelectrocatalysts for oxygen reduction and hydrogen peroxide formation: azobenzene and derivatives. Physical Chemistry Chemical Physics, 2004, 6, 4034-4041.	2.8	17
120	Novel Ternary Polymer BlendMembranesDopedwith SO4/PO4-TiO2for Low Temperature Fuel Cells. , 0, , .		5
121	High-Performance Metal (Au,Cu)–Polypyrrole Nanocomposites for Electrochemical Borohydride Oxidation in Fuel Cell Applications. SSRN Electronic Journal, 0, , .	0.4	0
122	Corrosion–resistant materials for alkaline water electrolyzers. Corrosion, 0, , .	1.1	0
123	Tuning Electrocatalytic Activity of Gold Silver Nanoparticles on Reduced Graphene Oxide for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 0, , .	2.9	2