Andrew Cooper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7276850/publications.pdf Version: 2024-02-01

		1614	2509
305	42,098	105	196
papers	citations	h-index	g-index
324	324	324	23850
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving. Nature Materials, 2022, 21, 463-470.	27.5	108
2	Using sound to synthesize covalent organic frameworks in water. , 2022, 1, 87-95.		92
3	Reconstructed covalent organic frameworks. Nature, 2022, 604, 72-79.	27.8	190
4	Photocatalytic Overall Water Splitting Under Visible Light Enabled by a Particulate Conjugated Polymer Loaded with Palladium and Iridium**. Angewandte Chemie, 2022, 134, .	2.0	7
5	Photocatalytic Overall Water Splitting Under Visible Light Enabled by a Particulate Conjugated Polymer Loaded with Palladium and Iridium**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	40
6	Room temperature all-solid-state lithium batteries based on a soluble organic cage ionic conductor. Nature Communications, 2022, 13, 2031.	12.8	19
7	A Pyrene-4,5,9,10-Tetraone-Based Covalent Organic Framework Delivers High Specific Capacity as a Li-Ion Positive Electrode. Journal of the American Chemical Society, 2022, 144, 9434-9442.	13.7	77
8	Accelerated Synthesis and Discovery of Covalent Organic Framework Photocatalysts for Hydrogen Peroxide Production. Journal of the American Chemical Society, 2022, 144, 9902-9909.	13.7	154
9	Analogy Powered by Prediction and Structural Invariants: Computationally Led Discovery of a Mesoporous Hydrogen-Bonded Organic Cage Crystal. Journal of the American Chemical Society, 2022, 144, 9893-9901.	13.7	33
10	Exploring cooperative porosity in organic cage crystals using <i>in situ</i> diffraction and molecular simulations. Faraday Discussions, 2021, 225, 100-117.	3.2	1
11	Creating porosity in a trianglimine macrocycle by heterochiral pairing. Chemical Communications, 2021, 57, 6141-6144.	4.1	12
12	Acetylene-linked conjugated polymers for sacrificial photocatalytic hydrogen evolution from water. Journal of Materials Chemistry A, 2021, 9, 17242-17248.	10.3	18
13	Combining machine learning and high-throughput experimentation to discover photocatalytically active organic molecules. Chemical Science, 2021, 12, 10742-10754.	7.4	52
14	Melt-quenched porous organic cage glasses. Journal of Materials Chemistry A, 2021, 9, 19807-19816.	10.3	15
15	Probing Dynamics of Water Mass Transfer in Organic Porous Photocatalyst Water-Splitting Materials by Neutron Spectroscopy. Chemistry of Materials, 2021, 33, 1363-1372.	6.7	5
16	Digital navigation of energy–structure–function maps for hydrogen-bonded porous molecular crystals. Nature Communications, 2021, 12, 817.	12.8	31
17	Crystallography companion agent for high-throughput materials discovery. Nature Computational Science, 2021, 1, 290-297.	8.0	38
18	The changing state of porous materials. Nature Materials, 2021, 20, 1179-1187.	27.5	147

#	Article	IF	CITATIONS
19	Inherent Ethyl Acetate Selectivity in a Trianglimine Molecular Solid. Chemistry - A European Journal, 2021, 27, 10589-10594.	3.3	6
20	Dynamics in Flexible Pillar[<i>n</i>]arenes Probed by Solid-State NMR. Journal of Physical Chemistry C, 2021, 125, 13370-13381.	3.1	5
21	Innenrücktitelbild: SO ₂ Capture Using Porous Organic Cages (Angew. Chem. 32/2021). Angewandte Chemie, 2021, 133, 17891-17891.	2.0	0
22	SO ₂ Capture Using Porous Organic Cages. Angewandte Chemie, 2021, 133, 17697-17704.	2.0	3
23	SO ₂ Capture Using Porous Organic Cages. Angewandte Chemie - International Edition, 2021, 60, 17556-17563.	13.8	85
24	Tectonic shifts in framework chemistry. Nature Chemistry, 2021, 13, 620-621.	13.6	11
25	Accelerating computational discovery of porous solids through improved navigation of energy-structure-function maps. Science Advances, 2021, 7, .	10.3	13
26	Integrated Covalent Organic Framework/Carbon Nanotube Composite as Liâ€lon Positive Electrode with Ultraâ€High Rate Performance. Advanced Energy Materials, 2021, 11, 2101880.	19.5	73
27	Polymeric Fiber Sorbents Embedded with Porous Organic Cages. ACS Applied Materials & Interfaces, 2021, 13, 47118-47126.	8.0	9
28	Modular Type III Porous Liquids Based on Porous Organic Cage Microparticles. Advanced Functional Materials, 2021, 31, 2106116.	14.9	26
29	A Cubic 3D Covalent Organic Framework with nbo Topology. Journal of the American Chemical Society, 2021, 143, 15011-15016.	13.7	87
30	Bottom-up wet-chemical synthesis of a two-dimensional porous carbon material with high supercapacitance using a cascade coupling/cyclization route. Journal of Materials Chemistry A, 2021, 9, 3303-3308.	10.3	23
31	Photocatalytic syngas production using conjugated organic polymers. Journal of Materials Chemistry A, 2021, 9, 4291-4296.	10.3	33
32	Photocatalytic polymers of intrinsic microporosity for hydrogen production from water. Journal of Materials Chemistry A, 2021, 9, 19958-19964.	10.3	36
33	Organic cage inclusion crystals exhibiting guest-enhanced multiphoton harvesting. CheM, 2021, 7, 3157-3170.	11.7	6
34	Time-Resolved Raman Spectroscopy of Polaron Formation in a Polymer Photocatalyst. Journal of Physical Chemistry Letters, 2021, 12, 10899-10905.	4.6	11
35	Scalable Synthesis of Ultrathin Polyimide Covalent Organic Framework Nanosheets for High-Performance Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2021, 143, 19446-19453.	13.7	104
36	Linear Conjugated Polymers for Solar-Driven Hydrogen Peroxide Production: The Importance of Catalyst Stability. Journal of the American Chemical Society, 2021, 143, 19287-19293.	13.7	127

#	Article	IF	CITATIONS
37	Computational screening for nested organic cage complexes. Molecular Systems Design and Engineering, 2020, 5, 186-196.	3.4	14
38	A stable covalent organic framework for photocatalytic carbon dioxide reduction. Chemical Science, 2020, 11, 543-550.	7.4	265
39	Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nature Materials, 2020, 19, 195-202.	27.5	237
40	Covalent Organic Framework Nanosheets Embedding Single Cobalt Sites for Photocatalytic Reduction of Carbon Dioxide. Chemistry of Materials, 2020, 32, 9107-9114.	6.7	79
41	Photocatalyst Z-scheme system composed of a linear conjugated polymer and BiVO ₄ for overall water splitting under visible light. Journal of Materials Chemistry A, 2020, 8, 16283-16290.	10.3	52
42	Nano-assemblies of a soluble conjugated organic polymer and an inorganic semiconductor for sacrificial photocatalytic hydrogen production from water. Nanoscale, 2020, 12, 24488-24494.	5.6	14
43	Crosslinked Polyimide and Reduced Graphene Oxide Composites as Long Cycle Life Positive Electrode for Lithiumâ€lon Cells. ChemSusChem, 2020, 13, 5571-5579.	6.8	14
44	Tracking Charge Transfer to Residual Metal Clusters in Conjugated Polymers for Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2020, 142, 14574-14587.	13.7	118
45	Structure–activity relationships in well-defined conjugated oligomer photocatalysts for hydrogen production from water. Chemical Science, 2020, 11, 8744-8756.	7.4	41
46	Controlling Photocatalytic Activity by Selfâ€Assembly – Tuning Perylene Bisimide Photocatalysts for the Hydrogen Evolution Reaction. Advanced Energy Materials, 2020, 10, 2002469.	19.5	33
47	Reprogramming bacterial protein organelles as a nanoreactor for hydrogen production. Nature Communications, 2020, 11, 5448.	12.8	69
48	3D Cage COFs: A Dynamic Three-Dimensional Covalent Organic Framework with High-Connectivity Organic Cage Nodes. Journal of the American Chemical Society, 2020, 142, 16842-16848.	13.7	174
49	Conjugated polymer donor–molecular acceptor nanohybrids for photocatalytic hydrogen evolution. Chemical Communications, 2020, 56, 6790-6793.	4.1	62
50	Inverse Vulcanized Polymers with Shape Memory, Enhanced Mechanical Properties, and Vitrimer Behavior. Angewandte Chemie - International Edition, 2020, 59, 13371-13378.	13.8	87
51	Side-chain tuning in conjugated polymer photocatalysts for improved hydrogen production from water. Energy and Environmental Science, 2020, 13, 1843-1855.	30.8	92
52	Continuous and scalable synthesis of a porous organic cage by twin screw extrusion (TSE). Chemical Science, 2020, 11, 6582-6589.	7.4	30
53	Inverse Vulcanized Polymers with Shape Memory, Enhanced Mechanical Properties, and Vitrimer Behavior. Angewandte Chemie, 2020, 132, 13473-13480.	2.0	6
54	Synthesis of Stable Thiazole-Linked Covalent Organic Frameworks via a Multicomponent Reaction. Journal of the American Chemical Society, 2020, 142, 11131-11138.	13.7	158

#	Article	IF	CITATIONS
55	Inducing Social Selfâ€&orting in Organic Cages To Tune The Shape of The Internal Cavity. Angewandte Chemie, 2020, 132, 16898-16906.	2.0	15
56	Inducing Social Self‧orting in Organic Cages To Tune The Shape of The Internal Cavity. Angewandte Chemie - International Edition, 2020, 59, 16755-16763.	13.8	41
57	Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework. Journal of Materials Chemistry A, 2020, 8, 7158-7170.	10.3	45
58	Organic heterojunctions for direct solar fuel generation. Communications Chemistry, 2020, 3, .	4.5	9
59	Hydrogen evolution from water using heteroatom substituted fluorene conjugated co-polymers. Journal of Materials Chemistry A, 2020, 8, 8700-8705.	10.3	47
60	Polymer photocatalysts with plasma-enhanced activity. Journal of Materials Chemistry A, 2020, 8, 7125-7129.	10.3	31
61	Water Oxidation with Cobalt‣oaded Linear Conjugated Polymer Photocatalysts. Angewandte Chemie, 2020, 132, 18854-18859.	2.0	16
62	Water Oxidation with Cobalt‣oaded Linear Conjugated Polymer Photocatalysts. Angewandte Chemie - International Edition, 2020, 59, 18695-18700.	13.8	55
63	A mobile robotic chemist. Nature, 2020, 583, 237-241.	27.8	645
64	An Expandable Hydrogen-Bonded Organic Framework Characterized by Three-Dimensional Electron Diffraction. Journal of the American Chemical Society, 2020, 142, 12743-12750.	13.7	70
65	The Chemistry of Porous Organic Molecular Materials. Advanced Functional Materials, 2020, 30, 1909842.	14.9	224
66	Advances in Conjugated Microporous Polymers. Chemical Reviews, 2020, 120, 2171-2214.	47.7	810
67	Controlling Gas Selectivity in Molecular Porous Liquids by Tuning the Cage Window Size. Angewandte Chemie - International Edition, 2020, 59, 7362-7366.	13.8	69
68	Geometric landscapes for material discovery within energy–structure–function maps. Chemical Science, 2020, 11, 5423-5433.	7.4	23
69	Controlling Gas Selectivity in Molecular Porous Liquids by Tuning the Cage Window Size. Angewandte Chemie, 2020, 132, 7432-7436.	2.0	25
70	Organic Cage Dumbbells. Chemistry - A European Journal, 2020, 26, 3718-3722.	3.3	19
71	From Concept to Crystals via Prediction: Multiâ€Component Organic Cage Pots by Social Selfâ€Sorting. Angewandte Chemie, 2019, 131, 16421-16427.	2.0	23
72	Barely porous organic cages for hydrogen isotope separation. Science, 2019, 366, 613-620.	12.6	210

#	Article	IF	CITATIONS
73	From Concept to Crystals via Prediction: Multiâ€Component Organic Cage Pots by Social Selfâ€Sorting. Angewandte Chemie - International Edition, 2019, 58, 16275-16281.	13.8	52
74	Accelerated robotic discovery of type II porous liquids. Chemical Science, 2019, 10, 9454-9465.	7.4	70
75	Aromatic polymers made by reductive polydehalogenation of oligocyclic monomers as conjugated polymers of intrinsic microporosity (C-PIMs). Polymer Chemistry, 2019, 10, 5200-5205.	3.9	7
76	Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nature Energy, 2019, 4, 746-760.	39.5	638
77	Metal–organic conjugated microporous polymer containing a carbon dioxide reduction electrocatalyst. Sustainable Energy and Fuels, 2019, 3, 2990-2994.	4.9	16
78	Mining predicted crystal structure landscapes with high throughput crystallisation: old molecules, new insights. Chemical Science, 2019, 10, 9988-9997.	7.4	61
79	Structurally Diverse Covalent Triazine-Based Framework Materials for Photocatalytic Hydrogen Evolution from Water. Chemistry of Materials, 2019, 31, 8830-8838.	6.7	111
80	Post-synthetic fluorination of Scholl-coupled microporous polymers for increased CO ₂ uptake and selectivity. Journal of Materials Chemistry A, 2019, 7, 549-557.	10.3	41
81	Photocatalytically active ladder polymers. Faraday Discussions, 2019, 215, 84-97.	3.2	20
82	Emulsion polymerization derived organic photocatalysts for improved light-driven hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 2490-2496.	10.3	84
83	Synthetic approaches to artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 242-281.	3.2	5
84	Accelerated Discovery of Organic Polymer Photocatalysts for Hydrogen Evolution from Water through the Integration of Experiment and Theory. Journal of the American Chemical Society, 2019, 141, 9063-9071.	13.7	264
85	Synthesis of a Large, Shape-Flexible, Solvatomorphic Porous Organic Cage. Crystal Growth and Design, 2019, 19, 3647-3651.	3.0	21
86	Understanding the effect of host flexibility on the adsorption of CH ₄ , CO ₂ and SF ₆ in porous organic cages. Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 547-555.	0.8	3
87	NMR relaxation and modelling study of the dynamics of SF6 and Xe in porous organic cages. Physical Chemistry Chemical Physics, 2019, 21, 24373-24382.	2.8	12
88	Efficient separation of propane and propene by a hypercrosslinked polymer doped with Ag(<scp>i</scp>). Journal of Materials Chemistry A, 2019, 7, 25521-25525.	10.3	21
89	Complex Phase Behaviour and Structural Transformations of Metalâ€Organic Frameworks with Mixed Rigid and Flexible Bridging Ligands. Chemistry - A European Journal, 2019, 25, 1353-1362.	3.3	2
90	Photocatalytic Hydrogen Evolution from Water Using Fluorene and Dibenzothiophene Sulfone-Conjugated Microporous and Linear Polymers. Chemistry of Materials, 2019, 31, 305-313.	6.7	173

#	Article	IF	CITATIONS
91	Cage Doubling: Solvent-Mediated Re-equilibration of a [3 + 6] Prismatic Organic Cage to a Large [6 + 12] Truncated Tetrahedron. Crystal Growth and Design, 2018, 18, 2759-2764.	3.0	34
92	Structural Elucidation of Amorphous Photocatalytic Polymers from Dynamic Nuclear Polarization Enhanced Solid State NMR. Macromolecules, 2018, 51, 3088-3096.	4.8	32
93	Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy, 2018, 46, 277-289.	16.0	317
94	pH effects on molecular hydrogen storage in porous organic cages deposited onto platinum electrodes. Journal of Electroanalytical Chemistry, 2018, 819, 46-50.	3.8	5
95	Energy–Structure–Function Maps: Cartography for Materials Discovery. Advanced Materials, 2018, 30, e1704944.	21.0	44
96	A solution-processable dissymmetric porous organic cage. Molecular Systems Design and Engineering, 2018, 3, 223-227.	3.4	26
97	Investigating the breakdown of the nerve agent simulant methyl paraoxon and chemical warfare agents GB and VX using nitrogen containing bases. Organic and Biomolecular Chemistry, 2018, 16, 9285-9291.	2.8	32
98	Computationally-inspired discovery of an unsymmetrical porous organic cage. Nanoscale, 2018, 10, 22381-22388.	5.6	34
99	Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution. Nature Communications, 2018, 9, 4968.	12.8	244
100	Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nature Chemistry, 2018, 10, 1180-1189.	13.6	883
101	Covalent and electrostatic incorporation of amines into hypercrosslinked polymers for increased CO ₂ selectivity. Journal of Polymer Science Part A, 2018, 56, 2513-2521.	2.3	9
102	Computational modelling of solvent effects in a prolific solvatomorphic porous organic cage. Faraday Discussions, 2018, 211, 383-399.	3.2	33
103	Innentitelbild: Core-Shell Crystals of Porous Organic Cages (Angew. Chem. 35/2018). Angewandte Chemie, 2018, 130, 11250-11250.	2.0	0
104	Nitrogen Containing Linear Poly(phenylene) Derivatives for Photo-catalytic Hydrogen Evolution from Water. Chemistry of Materials, 2018, 30, 5733-5742.	6.7	88
105	Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separation. Journal of Membrane Science, 2018, 564, 878-886.	8.2	69
106	High-throughput discovery of organic cages and catenanes using computational screening fused with robotic synthesis. Nature Communications, 2018, 9, 2849.	12.8	131
107	Near-Ideal Xylene Selectivity in Adaptive Molecular Pillar[<i>n</i>]arene Crystals. Journal of the American Chemical Society, 2018, 140, 6921-6930.	13.7	191
108	Core–Shell Crystals of Porous Organic Cages. Angewandte Chemie, 2018, 130, 11398-11402.	2.0	14

#	Article	IF	CITATIONS
109	Maximising the hydrogen evolution activity in organic photocatalysts by co-polymerisation. Journal of Materials Chemistry A, 2018, 6, 11994-12003.	10.3	93
110	Core–Shell Crystals of Porous Organic Cages. Angewandte Chemie - International Edition, 2018, 57, 11228-11232.	13.8	45
111	Understanding gas capacity, guest selectivity, and diffusion in porous liquids. Chemical Science, 2017, 8, 2640-2651.	7.4	115
112	Swellable functional hypercrosslinked polymer networks for the uptake of chemical warfare agents. Polymer Chemistry, 2017, 8, 1914-1922.	3.9	44
113	Styrene Purification by Guest-Induced Restructuring of Pillar[6]arene. Journal of the American Chemical Society, 2017, 139, 2908-2911.	13.7	191
114	Structure-property relationships for covalent triazine-based frameworks: The effect of spacer length on photocatalytic hydrogen evolution from water. Polymer, 2017, 126, 283-290.	3.8	135
115	Chirality as a tool for function in porous organic cages. Nanoscale, 2017, 9, 6783-6790.	5.6	31
116	Porous Molecular Solids and Liquids. ACS Central Science, 2017, 3, 544-553.	11.3	194
117	Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages. ACS Central Science, 2017, 3, 734-742.	11.3	68
118	Modular assembly of porous organic cage crystals: isoreticular quasiracemates and ternary co-crystal. CrystEngComm, 2017, 19, 4933-4941.	2.6	18
119	Inside information on xenon adsorption in porous organic cages by NMR. Chemical Science, 2017, 8, 5721-5727.	7.4	37
120	Layered microporous polymers by solvent knitting method. Science Advances, 2017, 3, e1602610.	10.3	135
121	Functional materials discovery using energy–structure–function maps. Nature, 2017, 543, 657-664.	27.8	348
122	Ultraâ€Fast Molecular Rotors within Porous Organic Cages. Chemistry - A European Journal, 2017, 23, 17217-17221.	3.3	22
123	A Solutionâ€Processable Polymer Photocatalyst for Hydrogen Evolution from Water. Advanced Energy Materials, 2017, 7, 1700479.	19.5	135
124	Covalent Triazine Frameworks via a Lowâ€Temperature Polycondensation Approach. Angewandte Chemie, 2017, 129, 14337-14341.	2.0	83
125	Covalent Triazine Frameworks via a Lowâ€Temperature Polycondensation Approach. Angewandte Chemie - International Edition, 2017, 56, 14149-14153.	13.8	441
126	High surface area sulfur-doped microporous carbons from inverse vulcanised polymers. Journal of Materials Chemistry A, 2017, 5, 18603-18609.	10.3	47

#	Article	IF	CITATIONS
127	Computational Screening of Porous Organic Molecules for Xenon/Krypton Separation. Journal of Physical Chemistry C, 2017, 121, 15211-15222.	3.1	45
128	A Perspective on the Synthesis, Purification, and Characterization of Porous Organic Cages. Chemistry of Materials, 2017, 29, 149-157.	6.7	96
129	Reticular synthesis of porous molecular 1D nanotubes and 3D networks. Nature Chemistry, 2017, 9, 17-25.	13.6	122
130	Oriented Twoâ€Ðimensional Porous Organic Cage Crystals. Angewandte Chemie, 2017, 129, 9519-9523.	2.0	13
131	Oriented Twoâ€Dimensional Porous Organic Cage Crystals. Angewandte Chemie - International Edition, 2017, 56, 9391-9395.	13.8	33
132	Bisâ€Calix[4]arenes: From Ligand Design to the Directed Assembly of a Metal–Organic Trigonal Antiprism. Chemistry - A European Journal, 2016, 22, 8791-8795.	3.3	9
133	Porous Organic Cage Thin Films and Molecularâ€Sieving Membranes. Advanced Materials, 2016, 28, 2629-2637.	21.0	275
134	Molecular Sieves: Porous Organic Cage Thin Films and Molecular‧ieving Membranes (Adv. Mater.) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
135	Visibleâ€Lightâ€Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts. Angewandte Chemie - International Edition, 2016, 55, 1792-1796.	13.8	372
136	Tuning Photophysical Properties in Conjugated Microporous Polymers by Comonomer Doping Strategies. Chemistry of Materials, 2016, 28, 3469-3480.	6.7	106
137	Visibleâ€Lightâ€Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts. Angewandte Chemie, 2016, 128, 1824-1828.	2.0	156
138	Functional porous composites by blending with solution-processable molecular pores. Chemical Communications, 2016, 52, 6895-6898.	4.1	25
139	Porosity-engineered carbons for supercapacitive energy storage using conjugated microporous polymer precursors. Journal of Materials Chemistry A, 2016, 4, 7665-7673.	10.3	126
140	Understanding static, dynamic and cooperative porosity in molecular materials. Chemical Science, 2016, 7, 4875-4879.	7.4	43
141	Peripheryâ€Functionalized Porous Organic Cages. Chemistry - A European Journal, 2016, 22, 16547-16553.	3.3	38
142	Hyperporous Carbons from Hypercrosslinked Polymers. Advanced Materials, 2016, 28, 9804-9810.	21.0	201

143	Extended conjugated microporous polymers for photocatalytic hydrogen evolution from water. Chemical Communications, 2016, 52, 10008-10011.	4.1	175
144	Porous organic cages: soluble, modular and molecular pores. Nature Reviews Materials, 2016, 1, .	48.7	603

9

#	Article	IF	CITATIONS
145	Three-dimensional protonic conductivity in porous organic cage solids. Nature Communications, 2016, 7, 12750.	12.8	133
146	Porous Organic Cages for Sulfur Hexafluoride Separation. Journal of the American Chemical Society, 2016, 138, 1653-1659.	13.7	200
147	PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers. Chemical Communications, 2016, 52, 5581-5584.	4.1	121
148	The effect of molecular weight on the porosity of hypercrosslinked polystyrene. Polymer Chemistry, 2015, 6, 7280-7285.	3.9	26
149	Function-led design of new porous materials. Science, 2015, 348, aaa8075.	12.6	1,272
150	Tunable Organic Photocatalysts for Visible-Light-Driven Hydrogen Evolution. Journal of the American Chemical Society, 2015, 137, 3265-3270.	13.7	747
151	Trapping virtual pores by crystal retro-engineering. Nature Chemistry, 2015, 7, 153-159.	13.6	52
152	Cooperative carbon capture. Nature, 2015, 519, 294-295.	27.8	48
153	Porous Organic Cages for Gas Chromatography Separations. Chemistry of Materials, 2015, 27, 3207-3210.	6.7	169
154	Using intermolecular interactions to crosslink PIM-1 and modify its gas sorption properties. Journal of Materials Chemistry A, 2015, 3, 4855-4864.	10.3	52
155	Dynamic flow synthesis of porous organic cages. Chemical Communications, 2015, 51, 17390-17393.	4.1	52
156	Tunable Porosity through Cooperative Diffusion in a Multicomponent Porous Molecular Crystal. Journal of Physical Chemistry C, 2015, 119, 22577-22586.	3.1	15
157	Liquids with permanent porosity. Nature, 2015, 527, 216-220.	27.8	402
158	Aligned macroporous monoliths with intrinsic microporosity via a frozen-solvent-templating approach. Chemical Communications, 2015, 51, 1717-1720.	4.1	34
159	Carbon nitride vs. graphene – now in 2D!. Materials Today, 2014, 17, 468-469.	14.2	21
160	Frontispiece: Triazine-Based Graphitic Carbon Nitride: a Two-Dimensional Semiconductor. Angewandte Chemie - International Edition, 2014, 53, n/a-n/a.	13.8	0
161	Frontispiz: Triazine-Based Graphitic Carbon Nitride: a Two-Dimensional Semiconductor. Angewandte Chemie, 2014, 126, n/a-n/a.	2.0	0
162	Triazineâ€Based Graphitic Carbon Nitride: a Twoâ€Dimensional Semiconductor. Angewandte Chemie - International Edition, 2014, 53, 7450-7455.	13.8	523

#	ARTICLE	IF	CITATIONS
163	â€~Dry bases': carbon dioxide capture using alkaline dry water. Energy and Environmental Science, 2014, 7, 1786-1791.	30.8	42
164	Network formation mechanisms in conjugated microporous polymers. Polymer Chemistry, 2014, 5, 6325-6333.	3.9	61
165	Predicted crystal energy landscapes of porous organic cages. Chemical Science, 2014, 5, 2235-2245.	7.4	73
166	Metallo-Cryptophanes Decorated with Bis-N-Heterocyclic Carbene Ligands: Self-Assembly and Guest Uptake into a Nonporous Crystalline Lattice. Journal of the American Chemical Society, 2014, 136, 14393-14396.	13.7	72
167	Conjugated Polymers of Intrinsic Microporosity (Câ€PIMs). Advanced Functional Materials, 2014, 24, 5219-5224.	14.9	89
168	Shining a Light on <i>s</i> -Triazine-Based Polymers. Journal of Physical Chemistry C, 2014, 118, 4314-4324.	3.1	45
169	Guest control of structure in porous organic cages. Chemical Communications, 2014, 50, 9465-9468.	4.1	65
170	Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nature Materials, 2014, 13, 954-960.	27.5	532
171	Acid- and Base-Stable Porous Organic Cages: Shape Persistence and pH Stability via Post-synthetic "Tying―of a Flexible Amine Cage. Journal of the American Chemical Society, 2014, 136, 7583-7586.	13.7	192
172	Controlling the Crystallization of Porous Organic Cages: Molecular Analogs of Isoreticular Frameworks Using Shape-Specific Directing Solvents. Journal of the American Chemical Society, 2014, 136, 1438-1448.	13.7	122
173	Swellable, Water- and Acid-Tolerant Polymer Sponges for Chemoselective Carbon Dioxide Capture. Journal of the American Chemical Society, 2014, 136, 9028-9035.	13.7	201
174	Gas Diffusion in a Porous Organic Cage: Analysis of Dynamic Pore Connectivity Using Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2014, 118, 12734-12743.	3.1	43
175	Post-synthetic modification of conjugated microporous polymers. Polymer, 2014, 55, 321-325.	3.8	100
176	Low band-gap benzothiadiazole conjugated microporous polymers. Polymer Chemistry, 2013, 4, 5585.	3.9	66
177	Dynamic Nuclear Polarization NMR Spectroscopy Allows High-Throughput Characterization of Microporous Organic Polymers. Journal of the American Chemical Society, 2013, 135, 15290-15293.	13.7	74
178	Conjugated Microporous Polymers with Rose Bengal Dye for Highly Efficient Heterogeneous Organo-Photocatalysis. Macromolecules, 2013, 46, 8779-8783.	4.8	184
179	Shedding Light on Structure–Property Relationships for Conjugated Microporous Polymers: The Importance of Rings and Strain. Macromolecules, 2013, 46, 7696-7704.	4.8	44
180	High-pressure carbon dioxide uptake for porous organic cages: comparison of spectroscopic and manometric measurement techniques. Chemical Communications, 2013, 49, 9410.	4.1	43

#	Article	IF	CITATIONS
181	Shape Prediction for Supramolecular Organic Nanostructures: [4 + 4] Macrocyclic Tetrapods. Crystal Growth and Design, 2013, 13, 4993-5000.	3.0	38
182	Tuning of gallery heights in a crystalline 2D carbon nitride network. Journal of Materials Chemistry A, 2013, 1, 1102-1107.	10.3	98
183	Molecular shape sorting using molecular organic cages. Nature Chemistry, 2013, 5, 276-281.	13.6	307
184	Nanoporous Organic Polymer/Cage Composite Membranes. Angewandte Chemie - International Edition, 2013, 52, 1253-1256.	13.8	263
185	Molecular Dynamics Simulations of Gas Selectivity in Amorphous Porous Molecular Solids. Journal of the American Chemical Society, 2013, 135, 17818-17830.	13.7	91
186	Covalent organic frameworks. CrystEngComm, 2013, 15, 1483.	2.6	24
187	Gas storage in renewable bioclathrates. Energy and Environmental Science, 2013, 6, 105-107.	30.8	36
188	Molecular simulations to understand and to design porous organic molecules. Current Opinion in Solid State and Materials Science, 2013, 17, 19-30.	11.5	42
189	<i>In silico</i> Design of Supramolecules from Their Precursors: Odd–Even Effects in Cage-Forming Reactions. Journal of the American Chemical Society, 2013, 135, 9307-9310.	13.7	75
190	Exfoliation of Crystalline 2D Carbon Nitride: Thin Sheets, Scrolls and Bundles via Mechanical and Chemical Routes. Macromolecular Rapid Communications, 2013, 34, 850-854.	3.9	74
191	Dodecaamide Cages: Organic 12-Arm Building Blocks for Supramolecular Chemistry. Journal of the American Chemical Society, 2013, 135, 10007-10010.	13.7	50
192	Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers. Polymer International, 2013, 62, 345-352.	3.1	267
193	Soluble Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2012, 51, 12727-12731.	13.8	192
194	Reversible water uptake by a stable imine-based porous organic cage. Chemical Communications, 2012, 48, 4689.	4.1	91
195	Porous Organic Cage Nanocrystals by Solution Mixing. Journal of the American Chemical Society, 2012, 134, 588-598.	13.7	235
196	Functional conjugated microporous polymers: from 1,3,5-benzene to 1,3,5-triazine. Polymer Chemistry, 2012, 3, 928.	3.9	191
197	Solutionâ€Processable Molecular Cage Micropores for Hierarchically Porous Materials. Advanced Materials, 2012, 24, 5732-5737.	21.0	85
198	Porous organic cage crystals: characterising the porous crystal surface. Chemical Communications, 2012, 48, 11948.	4.1	16

#	Article	IF	CITATIONS
199	Impact of Water Coadsorption for Carbon Dioxide Capture in Microporous Polymer Sorbents. Journal of the American Chemical Society, 2012, 134, 10741-10744.	13.7	259
200	Materials challenges for the development of solid sorbents for post-combustion carbon capture. Journal of Materials Chemistry, 2012, 22, 2815-2823.	6.7	255
201	Branching out with aminals: microporous organic polymers from difunctional monomers. Polymer Chemistry, 2012, 3, 533-537.	3.9	92
202	Bespoke Force Field for Simulating the Molecular Dynamics of Porous Organic Cages. Journal of Physical Chemistry C, 2012, 116, 16639-16651.	3.1	40
203	Step Change Adsorbents and Processes for CO2 Capture "STEPCAP. , 2012, , 30-37.		3
204	Alkylated organic cages: from porous crystals to neat liquids. Chemical Science, 2012, 3, 2153.	7.4	123
205	Microporous copolymers for increased gas selectivity. Polymer Chemistry, 2012, 3, 2034.	3.9	140
206	Porous, Fluorescent, Covalent Triazineâ€Based Frameworks Via Roomâ€Temperature and Microwaveâ€Assisted Synthesis. Advanced Materials, 2012, 24, 2357-2361.	21.0	636
207	Porous Organic Alloys. Angewandte Chemie - International Edition, 2012, 51, 7154-7157.	13.8	87
208	Molecular Organic Crystals: From Barely Porous to Really Porous. Angewandte Chemie - International Edition, 2012, 51, 7892-7894.	13.8	81
209	Nanoporous organic polymer networks. Progress in Polymer Science, 2012, 37, 530-563.	24.7	1,029
210	Band gap engineering in fluorescent conjugated microporous polymers. Chemical Science, 2011, 2, 1777.	7.4	257
211	Conformer interconversion in a switchable porous organic cage. Physical Chemistry Chemical Physics, 2011, 13, 20081.	2.8	17
212	Microencapsulation using an oil-in-water-in-air â€~dry water emulsion'. Chemical Communications, 2011, 47, 8253.	4.1	13
213	Scalable Synthesis for Porous Organic Cages. Synthetic Communications, 2011, 41, 2146-2151.	2.1	25
214	Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture. Journal of Materials Chemistry, 2011, 21, 5475.	6.7	302
215	Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chemical Science, 2011, 2, 1173.	7.4	532
216	Supramolecular Engineering of Intrinsic and Extrinsic Porosity in Covalent Organic Cages. Journal of the American Chemical Society, 2011, 133, 16566-16571.	13.7	146

#	Article	IF	CITATIONS
217	Molecular Doping of Porous Organic Cages. Journal of the American Chemical Society, 2011, 133, 14920-14923.	13.7	196
218	Selective gas sorption in a [2+3] â€~propeller' cage crystal. Chemical Communications, 2011, 47, 8919.	4.1	67
219	Porous organic molecular solids by dynamic covalent scrambling. Nature Communications, 2011, 2, 207.	12.8	155
220	Microporous organic polymers for carbon dioxide capture. Energy and Environmental Science, 2011, 4, 4239.	30.8	553
221	Modular and predictable assembly of porous organic molecular crystals. Nature, 2011, 474, 367-371.	27.8	452
222	Metal–Organic Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2011, 50, 1072-1075.	13.8	318
223	On–Off Porosity Switching in a Molecular Organic Solid. Angewandte Chemie - International Edition, 2011, 50, 749-753.	13.8	176
224	Nanoporous Organics Enter the Cage Age. Angewandte Chemie - International Edition, 2011, 50, 996-998.	13.8	98
225	Cover Picture: On-Off Porosity Switching in a Molecular Organic Solid (Angew. Chem. Int. Ed. 3/2011). Angewandte Chemie - International Edition, 2011, 50, 555-555.	13.8	Ο
226	Large Selfâ€Assembled Chiral Organic Cages: Synthesis, Structure, and Shape Persistence. Angewandte Chemie - International Edition, 2011, 50, 10653-10656.	13.8	132
227	A Soft Porous Organic Cage Crystal with Complex Gas Sorption Behavior. Chemistry - A European Journal, 2011, 17, 10235-10240.	3.3	85
228	Ultrahigh Surface Area in Porous Solids. Advanced Materials, 2010, 22, 5212-5216.	21.0	137
229	Porous Organic Polymers: Distinction from Disorder?. Angewandte Chemie - International Edition, 2010, 49, 1533-1535.	13.8	156
230	Emulsions-directed assembly of gold nanoparticles to molecularly-linked and size-controlled spherical aggregates. Journal of Colloid and Interface Science, 2010, 350, 368-372.	9.4	19
231	Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes. Microporous and Mesoporous Materials, 2010, 132, 132-136.	4.4	93
232	Triply interlocked covalent organic cages. Nature Chemistry, 2010, 2, 750-755.	13.6	230
233	Porous organic molecules. Nature Chemistry, 2010, 2, 915-920.	13.6	440
234	High Surface Area Conjugated Microporous Polymers: The Importance of Reaction Solvent Choice. Macromolecules, 2010, 43, 8524-8530.	4.8	195

#	Article	IF	CITATIONS
235	Study of the mechanochemical formation and resulting properties of an archetypal MOF: Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate). CrystEngComm, 2010, 12, 4063.	2.6	123
236	Polymer CO ₂ Solubility. Structure/Property Relationships in Polyester Libraries. Macromolecules, 2010, 43, 9426-9433.	4.8	29
237	Uploading and Temperature-Controlled Release of Polymeric Colloids via Hydrophilic Emulsion-Templated Porous Polymers. ACS Applied Materials & Interfaces, 2010, 2, 1400-1406.	8.0	50
238	High Surface Area Contorted Conjugated Microporous Polymers Based on Spiro-Bipropylenedioxythiophene. Macromolecules, 2010, 43, 7577-7582.	4.8	112
239	High Surface Area Networks from Tetrahedral Monomers: Metal-Catalyzed Coupling, Thermal Polymerization, and "Click―Chemistry. Macromolecules, 2010, 43, 8531-8538.	4.8	203
240	Palladium Nanoparticle Incorporation in Conjugated Microporous Polymers by Supercritical Fluid Processing. Chemistry of Materials, 2010, 22, 557-564.	6.7	128
241	A Metalâ~'Organic Framework with a Covalently Prefabricated Porous Organic Linker. Journal of the American Chemical Society, 2010, 132, 12773-12775.	13.7	88
242	Pausing a stir: heterogeneous catalysis in "dry water― Green Chemistry, 2010, 12, 783.	9.0	46
243	Emulsion-Templated Porous Materials Using Concentrated Carbon Dioxide-in-Water Emulsions and Inexpensive Hydrocarbon Surfactants. ACS Symposium Series, 2009, , 243-258.	0.5	0
244	Conjugated Microporous Polymers. Advanced Materials, 2009, 21, 1291-1295.	21.0	929
245	Polymerâ€Mediated Hierarchical and Reversible Emulsion Droplet Assembly. Angewandte Chemie - International Edition, 2009, 48, 2131-2134.	13.8	67
246	Porous organic cages. Nature Materials, 2009, 8, 973-978.	27.5	984
247	Reversible Methane Storage in a Polymer-Supported Semi-Clathrate Hydrate at Ambient Temperature and Pressure. Chemistry of Materials, 2009, 21, 3810-3815.	6.7	45
248	Fractionation of Poly(vinyl acetate) and the Phase Behavior of End-Group Modified Oligo(vinyl) Tj ETQq0 0 0 rgB1	Qverlock	10 Tf 50 22
249	Functionalized Conjugated Microporous Polymers. Macromolecules, 2009, 42, 8809-8816.	4.8	352
250	Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. Journal of Materials Chemistry, 2009, 19, 5212.	6.7	65
251	Microporous Poly(tri(4-ethynylphenyl)amine) Networks: Synthesis, Properties, and Atomistic Simulation. Macromolecules, 2009, 42, 2658-2666.	4.8	166
252	Controlling responsive emulsion properties via polymer design. Chemical Communications, 2009, , 3554.	4.1	33

#	Article	IF	CITATIONS
253	Predicting microporous crystalline polyimides. CrystEngComm, 2009, 11, 1819.	2.6	32
254	High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers. Chemical Communications, 2009, , 212-214.	4.1	152
255	Microporous Organic Polymers: Design, Synthesis, and Function. Topics in Current Chemistry, 2009, 293, 1-33.	4.0	107
256	Rapid Microwave Synthesis and Purification of Porous Covalent Organic Frameworks. Chemistry of Materials, 2009, 21, 204-206.	6.7	350
257	Control of Porosity Geometry in Amino Acid Derived Nanoporous Materials. Chemistry - A European Journal, 2008, 14, 4521-4532.	3.3	81
258	Freezeâ€Align and Heatâ€Fuse: Microwires and Networks from Nanoparticle Suspensions. Angewandte Chemie - International Edition, 2008, 47, 4573-4576.	13.8	37
259	Microporous Organic Polymers for Methane Storage. Advanced Materials, 2008, 20, 1916-1921.	21.0	351
260	Rapid and Reversible Hydrogen Storage in Clathrate Hydrates Using Emulsionâ€Templated Polymers. Advanced Materials, 2008, 20, 2663-2666.	21.0	93
261	Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nature Nanotechnology, 2008, 3, 506-511.	31.5	135
262	SYNTHESIS OF POROUS POLYMERS USING SUPERCRITICAL CARBON DIOXIDE. Annual Review of Nano Research, 2008, , 377-392.	0.2	1
263	Conjugated microporous poly(phenylene butadiynylene)s. Chemical Communications, 2008, , 486-488.	4.1	252
264	Atomistic Simulation of Micropore Structure, Surface Area, and Gas Sorption Properties for Amorphous Microporous Polymer Networks. Journal of Physical Chemistry C, 2008, 112, 20549-20559.	3.1	59
265	pH-Responsive branched polymer nanoparticles. Soft Matter, 2008, 4, 985.	2.7	71
266	Synthetic Control of the Pore Dimension and Surface Area in Conjugated Microporous Polymer and Copolymer Networks. Journal of the American Chemical Society, 2008, 130, 7710-7720.	13.7	802
267	"Naked―fluoride binding sites for physisorptive hydrogen storage. New Journal of Chemistry, 2008, 32, 17-20.	2.8	25
268	Mesoporous Poly(phenylenevinylene) Networks. Macromolecules, 2008, 41, 1591-1593.	4.8	68
269	Particle size–activity relationship for CoFe2O4 nanoparticle CO oxidation catalysts. Journal of Materials Chemistry, 2008, 18, 5518.	6.7	30
270	Vesicles from Peptidic Side-Chain Polymers Synthesized by Atom Transfer Radical Polymerization. Biomacromolecules, 2008, 9, 2997-3003.	5.4	39

#	Article	IF	CITATIONS
271	Synthesis of Emulsion-Templated Poly(acrylamide) Using CO2-in-Water Emulsions and Poly(vinyl) Tj ETQq1 1 0.	784314 rgBT 4.8	۲ <u>ل</u> 9verloc
272	CO2-in-Water Emulsion-Templated Poly(vinyl alcohol) Hydrogels Using Poly(vinyl acetate)-Based Surfactants. Macromolecules, 2007, 40, 1955-1961.	4.8	79
273	Combinatorial Discovery of Reusable Noncovalent Supports for Enzyme Immobilization and Nonaqueous Catalysis. ACS Combinatorial Science, 2007, 9, 399-406.	3.3	8
274	Hydrogen storage using polymer-supported organometallic dihydrogen complexes: a mechanistic study. Chemical Communications, 2007, , 2965.	4.1	18
275	Hydrogen Storage in Microporous Hypercrosslinked Organic Polymer Networks. Chemistry of Materials, 2007, 19, 2034-2048.	6.7	618
276	Supercritical Carbon Dioxide as a Green Solvent for Polymer Synthesis. , 2007, , 383-396.		10
277	Conjugated Microporous Poly(aryleneethynylene) Networks. Angewandte Chemie - International Edition, 2007, 46, 8574-8578.	13.8	1,278
278	Formation of Spherical Nanostructures by the Controlled Aggregation of Gold Colloids. Langmuir, 2006, 22, 2938-2941.	3.5	108
279	In situ crystallization of ionic liquids with melting points below â^'25 °C. CrystEngComm, 2006, 8, 742-745.	2.6	121
280	Synthesis of hierarchically porous inorganic–metal site-isolated nanocomposites. Chemical Communications, 2006, , 2539-2541.	4.1	25
281	Hydrogen adsorption in microporous hypercrosslinked polymers. Chemical Communications, 2006, , 2670.	4.1	314
282	Ionic Hydrocarbon Surfactants for Emulsification and Dispersion Polymerization in Supercritical CO2. Macromolecules, 2006, 39, 7471-7473.	4.8	28
283	Synthesis of Advanced Materials Using Supercritical Fluids. , 2006, , 239-254.		1
284	Synthesis of Porous Materials via Multiscale Templating Approaches: Emulsions, Nanoparticles, Supercritical Fluids, and Directional Freezing. Materials Research Society Symposia Proceedings, 2006, 988, 1.	0.1	0
285	Synthesis and applications of emulsion-templated porous materials. Soft Matter, 2005, 1, 107.	2.7	409
286	Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Materials, 2005, 4, 787-793.	27.5	721
287	High-throughput solubility measurements of polymer libraries in supercritical carbon dioxide. Journal of Materials Chemistry, 2005, 15, 456.	6.7	24
288	New approaches to the synthesis of macroporous metals. Journal of Materials Chemistry, 2005, 15, 2157.	6.7	32

#	Article	IF	CITATIONS
289	Synthesis and CO2Solubility Studies of Poly(ether carbonate)s and Poly(ether ester)s Produced by Step Growth Polymerization. Macromolecules, 2005, 38, 1691-1698.	4.8	39
290	Emulsion-Templated Hierarchically Porous Silica Beads Using Silica Nanoparticles as Building Blocks. Industrial & Engineering Chemistry Research, 2005, 44, 8707-8714.	3.7	38
291	Cross-Linked Polymers in Ionic Liquids: Ionic Liquids as Porogens. ACS Symposium Series, 2005, , 133-147.	0.5	7
292	Synthesis of Hierarchically Porous Silica and Metal Oxide Beads Using Emulsion-Templated Polymer Scaffolds. Chemistry of Materials, 2004, 16, 4245-4256.	6.7	145
293	Green synthesis of polymers using supercritical carbon dioxide. Current Opinion in Solid State and Materials Science, 2004, 8, 325-331.	11.5	73
294	Synthesis of porous cross-linked polymer monoliths using 1,1,1,2-tetrafluoroethane (R134a) as the porogen. Composites Science and Technology, 2003, 63, 2379-2387.	7.8	22
295	Structural Control in Porous Cross-Linked Poly(methacrylate) Monoliths Using Supercritical Carbon Dioxide as a "Pressure-Adjustable―Porogenic Solvent. Chemistry of Materials, 2003, 15, 2061-2069.	6.7	48
296	Synthesis of Polystyrene by Dispersion Polymerization in 1,1,1,2-Tetrafluoroethane (R134a) Using Inexpensive Hydrocarbon Macromonomer Stabilizers. Macromolecules, 2003, 36, 7534-7542.	4.8	25
297	Preparation of Acrylate-Stabilized Gold and Silver Hydrosols and Goldâ Polymer Composite Films. Langmuir, 2003, 19, 4831-4835.	3.5	229
298	Synthesis of Monodisperse Emulsion-Templated Polymer Beads by Oil-in-Water-in-Oil (O/W/O) Sedimentation Polymerization. Chemistry of Materials, 2002, 14, 4017-4020.	6.7	132
299	Synthesis and Processing of Porous Polymers Using Supercritical Carbon Dioxide. Progress in Rubber, Plastics and Recycling Technology, 2002, 18, 247-258.	1.8	2
300	Synthesis of Macroporous Polymer Beads by Suspension Polymerization Using Supercritical Carbon Dioxide as a Pressure-Adjustable Porogen. Macromolecules, 2001, 34, 5-8.	4.8	88
301	Recent Developments in Materials Synthesis and Processing Using Supercritical CO2. Advanced Materials, 2001, 13, 1111-1114.	21.0	150
302	Polymer synthesis and processing using supercritical carbon dioxide. Journal of Materials Chemistry, 2000, 10, 207-234.	6.7	889
303	Synthesis of Well-Defined Macroporous Polymer Monoliths by Solâ^'Gel Polymerization in Supercritical CO2. Industrial & Engineering Chemistry Research, 2000, 39, 4741-4744.	3.7	44
304	Understanding Hydrogen Evolution Activity of Linear Organic Photocatalysts. , 0, , .		0
305	Understanding Hydrogen Evolution Activity of Linear Organic Photocatalysts. , 0, , .		Ο