
David R Hyde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7275586/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The zebrafish as a model for complex tissue regeneration. Trends in Genetics, 2013, 29, 611-620.	6.7	439
2	Light-induced rod and cone cell death and regeneration in the adultalbino zebrafish (Danio rerio) retina. Journal of Neurobiology, 2000, 44, 289-307.	3.6	337
3	Regeneration of Inner Retinal Neurons after Intravitreal Injection of Ouabain in Zebrafish. Journal of Neuroscience, 2007, 27, 1712-1724.	3.6	283
4	Gene regulatory networks controlling vertebrate retinal regeneration. Science, 2020, 370, .	12.6	248
5	Cloning and characterization of six zebrafish photoreceptor opsin cDNAs and immunolocalization of their corresponding proteins. Visual Neuroscience, 1999, 16, 571-585.	1.0	220
6	Time course analysis of gene expression during light-induced photoreceptor cell death and regeneration inalbinozebrafish. Developmental Neurobiology, 2007, 67, 1009-1031.	3.0	209
7	A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis. Nature, 2007, 446, 797-800.	27.8	205
8	Tumor Necrosis Factor-Alpha Is Produced by Dying Retinal Neurons and Is Required for Müller Glia Proliferation during Zebrafish Retinal Regeneration. Journal of Neuroscience, 2013, 33, 6524-6539.	3.6	197
9	Characterization of Müller glia and neuronal progenitors during adult zebrafish retinal regeneration. Experimental Eye Research, 2008, 87, 433-444.	2.6	168
10	Ganglion cell regeneration following wholeâ€retina destruction in zebrafish. Developmental Neurobiology, 2008, 68, 166-181.	3.0	158
11	A novel model of retinal ablation demonstrates that the extent of rod cell death regulates the origin of the regenerated zebrafish rod photoreceptors. Journal of Comparative Neurology, 2010, 518, 800-814.	1.6	150
12	Inhibition of Müller glial cell division blocks regeneration of the lightâ€damaged zebrafish retina. Developmental Neurobiology, 2008, 68, 392-408.	3.0	146
13	Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against <i>fgfr1</i> and <i>msxb</i> . Developmental Dynamics, 2006, 235, 336-346.	1.8	132
14	Regulation of Müller glial dependent neuronal regeneration in the damaged adult zebrafish retina. Experimental Eye Research, 2014, 123, 131-140.	2.6	124
15	Repressing Notch Signaling and Expressing TNFα Are Sufficient to Mimic Retinal Regeneration by Inducing Müller Glial Proliferation to Generate Committed Progenitor Cells. Journal of Neuroscience, 2014, 34, 14403-14419.	3.6	121
16	Pax6a and Pax6b are required at different points in neuronal progenitor cell proliferation during zebrafish photoreceptor regeneration. Experimental Eye Research, 2010, 90, 572-582.	2.6	116
17	Retinal regional differences in photoreceptor cell death and regeneration in light-lesioned albino zebrafish. Experimental Eye Research, 2006, 82, 558-575.	2.6	110
18	CNTF induces photoreceptor neuroprotection and Müller glial cell proliferation through two different signaling pathways in the adult zebrafish retina. Experimental Eye Research, 2009, 88, 1051-1064.	2.6	109

DAVID R HYDE

#	Article	IF	CITATIONS
19	The inhibitor of phagocytosis, O-phospho-I-serine, suppresses Müller glia proliferation and cone cell regeneration in the light-damaged zebrafish retina. Experimental Eye Research, 2010, 91, 601-612.	2.6	106
20	Reprogramming Müller Glia to Regenerate Retinal Neurons. Annual Review of Vision Science, 2020, 6, 171-193.	4.4	105
21	Stat3 defines three populations of müller glia and is required for initiating maximal müller glia proliferation in the regenerating zebrafish retina. Journal of Comparative Neurology, 2012, 520, 4294-4311.	1.6	103
22	Cre-mediated site-specific recombination in zebrafish embryos. Developmental Dynamics, 2005, 233, 1366-1377.	1.8	88
23	Sox2 regulates Müller glia reprogramming and proliferation in the regenerating zebrafish retina via Lin28 and Ascl1a. Experimental Eye Research, 2017, 161, 174-192.	2.6	86
24	Inflammation and matrix metalloproteinase 9 (Mmpâ€9) regulate photoreceptor regeneration in adult zebrafish. Glia, 2020, 68, 1445-1465.	4.9	73
25	Mutations in laminin alpha 1 result in complex, lens-independent ocular phenotypes in zebrafish. Developmental Biology, 2006, 299, 63-77.	2.0	65
26	FGF signaling regulates rod photoreceptor cell maintenance and regeneration in zebrafish. Experimental Eye Research, 2011, 93, 726-734.	2.6	65
27	Isolation of a Zebrafish Rod Opsin Promoter to Generate a Transgenic Zebrafish Line Expressing Enhanced Green Fluorescent Protein in Rod Photoreceptors. Journal of Biological Chemistry, 2001, 276, 14037-14043.	3.4	62
28	The zebrafish Pard3 ortholog is required for separation of the eye fields and retinal lamination. Developmental Biology, 2004, 269, 286-301.	2.0	57
29	Characterization of multiple light damage paradigms reveals regional differences in photoreceptor loss. Experimental Eye Research, 2012, 97, 105-116.	2.6	57
30	Zebrafish foxe3: Roles in ocular lens morphogenesis through interaction with pitx3. Mechanisms of Development, 2006, 123, 761-782.	1.7	56
31	The Zebrafish Galectin Drgal1-L2 Is Expressed by Proliferating Müller Glia and Photoreceptor Progenitors and Regulates the Regeneration of Rod Photoreceptors. , 2010, 51, 3244.		56
32	Actin-Cytoskeleton- and Rock-Mediated INM Are Required for Photoreceptor Regeneration in the Adult Zebrafish Retina. Journal of Neuroscience, 2015, 35, 15612-15634.	3.6	55
33	Zebrafish Class 1 Phosphatidylinositol Transfer Proteins: PITPβ and Double Cone Cell Outer Segment Integrity in Retina. Traffic, 2010, 11, 1151-1167.	2.7	54
34	Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters. Transgenic Research, 2008, 17, 265-279.	2.4	46
35	Two Different Transgenes to Study Gene Silencing and Re-Expression During Zebrafish Caudal Fin and Retinal Regeneration. Scientific World Journal, The, 2006, 6, 65-81.	2.1	44
36	Zebrafish mutagenesis yields eye morphological mutants with retinal and lens defects. Vision Research, 2002, 42, 535-540.	1.4	42

DAVID R HYDE

#	Article	IF	CITATIONS
37	Cellular expression of <i>Midkineâ€a</i> and <i>Midkineâ€b</i> during retinal development and photoreceptor regeneration in zebrafish. Journal of Comparative Neurology, 2009, 514, 1-10.	1.6	42
38	Spectral-Domain Optical Coherence Tomography as a Noninvasive Method to Assess Damaged and Regenerating Adult Zebrafish Retinas. , 2012, 53, 3126.		40
39	miR-203 regulates progenitor cell proliferation during adult zebrafish retina regeneration. Developmental Biology, 2014, 392, 393-403.	2.0	40
40	Dynamic miRNA expression patterns during retinal regeneration in zebrafish: Reduced dicer or miRNA expression suppresses proliferation of Müller Gliaâ€derived neuronal progenitor cells. Developmental Dynamics, 2014, 243, 1591-1605.	1.8	38
41	Notch3 and <scp>DeltaB</scp> maintain Müller glia quiescence and act as negative regulators of regeneration in the lightâ€damaged zebrafish retina. Glia, 2021, 69, 546-566.	4.9	34
42	Arrested differentiation and epithelial cell degeneration in zebrafish lens mutants. Developmental Dynamics, 2001, 222, 625-636.	1.8	33
43	TNFα Induces Müller Glia to Transition From Non-proliferative Gliosis to a Regenerative Response in Mutant Zebrafish Presenting Chronic Photoreceptor Degeneration. Frontiers in Cell and Developmental Biology, 2019, 7, 296.	3.7	32
44	The Regenerating Adult Zebrafish Retina Recapitulates Developmental Fate Specification Programs. Frontiers in Cell and Developmental Biology, 2020, 8, 617923.	3.7	32
45	The Tg(ccnb1:EGFP) transgenic zebrafish line labels proliferating cells during retinal development and regeneration. Molecular Vision, 2008, 14, 951-63.	1.1	31
46	Stepwise Maturation of Apicobasal Polarity of the Neuroepithelium Is Essential for Vertebrate Neurulation. Journal of Neuroscience, 2009, 29, 11426-11440.	3.6	30
47	The Loss of Vacuolar Protein Sorting 11 (<i>vps11</i>) Causes Retinal Pathogenesis in a Vertebrate Model of Syndromic Albinism. , 2011, 52, 3119.		29
48	Pineal Photoreceptor Cells Are Required for Maintaining the Circadian Rhythms of Behavioral Visual Sensitivity in Zebrafish. PLoS ONE, 2012, 7, e40508.	2.5	28
49	Lens opacity and photoreceptor degeneration in the zebrafishlens opaque mutant. Developmental Dynamics, 2005, 233, 52-65.	1.8	25
50	In vivo Electroporation of Morpholinos into the Adult Zebrafish Retina. Journal of Visualized Experiments, 2011, , e3603.	0.3	25
51	The past, present, and future of retinal regeneration. Experimental Eye Research, 2014, 123, 105-106.	2.6	24
52	Retinal regeneration requires dynamic Notch signaling. Neural Regeneration Research, 2022, 17, 1199.	3.0	22
53	Molecular cloning of three zebrafish lin7 genes and their expression patterns in the retina. Experimental Eye Research, 2006, 82, 122-131.	2.6	21
54	Inhibition of the Pim1 Oncogene Results in Diminished Visual Function. PLoS ONE, 2012, 7, e52177.	2.5	20

DAVID R HYDE

#	Article	IF	CITATIONS
55	Lengsin expression and function during zebrafish lens formation. Experimental Eye Research, 2008, 86, 807-818.	2.6	18
56	Müller Glia as a Source of Neuronal Progenitor Cells to Regenerate the Damaged Zebrafish Retina. Advances in Experimental Medicine and Biology, 2012, 723, 425-430.	1.6	18
57	In vivo Electroporation of Morpholinos into the Regenerating Adult Zebrafish Tail Fin. Journal of Visualized Experiments, 2012, , .	0.3	17
58	Phosphatidylinositol synthase is required for lens structural integrity and photoreceptor cell survival in the zebrafish eye. Experimental Eye Research, 2011, 93, 460-474.	2.6	16
59	Transcription of the SCL/TAL1 Interrupting Locus (Stil) Is Required for Cell Proliferation in Adult Zebrafish Retinas. Journal of Biological Chemistry, 2014, 289, 6934-6940.	3.4	15
60	Interkinetic Nuclear Migration in the Regenerating Retina. Advances in Experimental Medicine and Biology, 2016, 854, 587-593.	1.6	14
61	Opportunities for CRISPR/Cas9 Gene Editing in Retinal Regeneration Research. Frontiers in Cell and Developmental Biology, 2017, 5, 99.	3.7	13
62	Zebrafish Blunt-Force TBI Induces Heterogenous Injury Pathologies That Mimic Human TBI and Responds with Sonic Hedgehog-Dependent Cell Proliferation across the Neuroaxis. Biomedicines, 2021, 9, 861.	3.2	12
63	Live-cell imaging: new avenues to investigate retinal regeneration. Neural Regeneration Research, 2017, 12, 1210.	3.0	7
64	Culture of Adult Transgenic Zebrafish Retinal Explants for Live-cell Imaging by Multiphoton Microscopy. Journal of Visualized Experiments, 2017, , .	0.3	4
65	Photo-regulation of rod precursor cell proliferation. Experimental Eye Research, 2019, 178, 148-159.	2.6	4
66	Iron contributes to photoreceptor degeneration and Müller glia proliferation in the zebrafish light-treated retina. Experimental Eye Research, 2022, 216, 108947.	2.6	4
67	A Scalable Model to Study the Effects of Blunt-Force Injury in Adult Zebrafish. Journal of Visualized Experiments, 2021, , .	0.3	3
68	Prophylactic Activation of Shh Signaling Attenuates TBI-Induced Seizures in Zebrafish by Modulating Glutamate Excitotoxicity through Eaat2a. Biomedicines, 2022, 10, 32.	3.2	3
69	Shuttle Box Assay as an Associative Learning Tool for Cognitive Assessment in Learning and Memory Studies using Adult Zebrafish. Journal of Visualized Experiments, 2021, , .	0.3	2