Miquel A Pericà s

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7274355/publications.pdf

Version: 2024-02-01

333 papers 13,448 citations

59 h-index 48315 88 g-index

481 all docs

481 docs citations

481 times ranked

8471 citing authors

#	Article	IF	CITATIONS
1	Polystyrene-Supported Hydroxyproline:  An Insoluble, Recyclable Organocatalyst for the Asymmetric Aldol Reaction in Water. Organic Letters, 2006, 8, 4653-4655.	4.6	326
2	A theoretical study on the mechanism of the thermal and the acid-catalyzed decarboxylation of 2-oxetanones (.betalactones). Journal of Organic Chemistry, 1989, 54, 573-582.	3.2	309
3	Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chemical Reviews, 2021, 121, 4373-4505.	47.7	302
4	A Highly Active Catalyst for Huisgen 1,3-Dipolar Cycloadditions Based on the Tris(triazolyl)methanolâ-'Cu(l) Structure. Organic Letters, 2009, 11, 4680-4683.	4.6	218
5	Toward an Artificial Aldolase. Organic Letters, 2008, 10, 337-340.	4.6	199
6	Highly Enantioselective Michael Additions in Water Catalyzed by a PS-Supported Pyrrolidine. Organic Letters, 2007, 9, 3717-3720.	4.6	193
7	Functionalized nanoparticles as catalysts for enantioselective processes. Organic and Biomolecular Chemistry, 2009, 7, 2669.	2.8	139
8	Asymmetric approach to Pauson-Khand bicyclization. Enantioselective formal synthesis of hirsutene. Journal of the American Chemical Society, 1990, 112, 9388-9389.	13.7	135
9	A Solidâ€Supported Organocatalyst for Highly Stereoselective, Batch, and Continuousâ€Flow Mannich Reactions. Chemistry - A European Journal, 2009, 15, 10167-10172.	3.3	131
10	2-Piperidino-1,1,2-triphenylethanol:  A Highly Effective Catalyst for the Enantioselective Arylation of Aldehydes. Journal of Organic Chemistry, 2004, 69, 2532-2543.	3.2	128
11	Lightâ€Driven Organocatalysis Using Inexpensive, Nontoxic Bi ₂ O ₃ as the Photocatalyst. Angewandte Chemie - International Edition, 2014, 53, 9613-9616.	13.8	126
12	Functionalization of Fe3O4 magnetic nanoparticles for organocatalytic Michael reactions. Journal of Materials Chemistry, 2011, 21, 7350.	6.7	125
13	Highly Enantioselective α-Aminoxylation of Aldehydes and Ketones with a Polymer-Supported Organocatalyst. Organic Letters, 2007, 9, 1943-1946.	4.6	118
14	Conversion of oxiranes and CO2 to organic cyclic carbonates using a recyclable, bifunctional polystyrene-supported organocatalyst. Green Chemistry, 2014, 16, 1552.	9.0	118
15	A Superior, Readily Available Enantiopure Ligand for the Catalytic Enantioselective Addition of Diethylzinc to α-Substituted Aldehydes. Journal of Organic Chemistry, 1998, 63, 7078-7082.	3.2	115
16	Characterization of a (2R,3R)-2,3-Butanediol Dehydrogenase as the Saccharomyces cerevisiae YALO60W Gene Product. Journal of Biological Chemistry, 2000, 275, 35876-35885.	3.4	114
17	General Approach to Glycosidase Inhibitors. Enantioselective Synthesis of Deoxymannojirimycin and Swainsonine. Journal of Organic Chemistry, 2005, 70, 2325-2328.	3.2	112
18	A Highly Selective, Polymer‧upported Organocatalyst for Michael Additions with Enzymeâ€Like Behavior. Advanced Synthesis and Catalysis, 2009, 351, 3051-3056.	4.3	109

#	Article	IF	Citations
19	A Dual-Function, Highly Efficient Chiral Controller for Stereoselective Intermolecular Pauson-Khand Reactions. Journal of the American Chemical Society, 1994, 116, 2153-2154.	13.7	106
20	A Click Strategy for the Immobilization of MacMillan Organocatalysts onto Polymers and Magnetic Nanoparticles. Organic Letters, 2012, 14, 3668-3671.	4.6	106
21	Organocatalysis on Tap: Enantioselective Continuous Flow Processes Mediated by Solidâ€Supported Chiral Organocatalysts. European Journal of Organic Chemistry, 2015, 2015, 1173-1188.	2.4	105
22	A Solidâ€Supported Organocatalyst for Continuousâ€Flow Enantioselective Aldol Reactions. ChemSusChem, 2012, 5, 320-325.	6.8	104
23	A New Chiral Bidentate (P,S) Ligand for the Asymmetric Intermolecular Pausonâ^'Khand Reaction. Journal of the American Chemical Society, 2000, 122, 10242-10243.	13.7	103
24	High Catalytic Activity of Chiral Amino Alcohol Ligands Anchored to Polystyrene Resins. Journal of Organic Chemistry, 1998, 63, 6309-6318.	3.2	101
25	Assessing the Suitability of 1,2,3-Triazole Linkers for Covalent Immobilization of Chiral Ligands: \hat{A} Application to Enantioselective Phenylation of Aldehydes. Journal of Organic Chemistry, 2007, 72, 2460-2468.	3.2	100
26	Highly Functionalized Biaryls via Suzuki–Miyaura Cross oupling Catalyzed by Pd@MOF under Batch and Continuous Flow Regimes. ChemSusChem, 2015, 8, 123-130.	6.8	94
27	A Recyclable, Immobilized Analogue of Benzotetramisole for Catalytic Enantioselective Domino Michael Addition/Cyclization Reactions in Batch and Flow. ACS Catalysis, 2016, 6, 348-356.	11.2	93
28	Continuous Flow, Highly Enantioselective Michael Additions Catalyzed by a PS-Supported Squaramide. Organic Letters, 2013, 15, 3498-3501.	4.6	91
29	Synthesis of a Family of Fine-Tunable New Chiral Ligands for Catalytic Asymmetric Synthesis. Ligand Optimization through the Enantioselective Addition of Diethylzinc to Aldehydes. Journal of Organic Chemistry, 1997, 62, 4970-4982.	3.2	89
30	Asymmetric $[4+2]$ Annulation Reactions Catalyzed by a Robust, Immobilized Isothiourea. ACS Catalysis, 2017, 7, 2780-2785.	11.2	87
31	Enantioselective Continuousâ€Flow Production of 3â€Indolylmethanamines Mediated by an Immobilized Phosphoric Acid Catalyst. Chemistry - A European Journal, 2014, 20, 2367-2372.	3.3	85
32	Polystyreneâ€Supported Diarylprolinol Ethers as Highly Efficient Organocatalysts for Michaelâ€Type Reactions. Chemistry - A European Journal, 2011, 17, 11585-11595.	3.3	84
33	Practical Implications of Boronâ€ŧoâ€Zinc Transmetalation for the Catalytic Asymmetric Arylation of Aldehydes. Angewandte Chemie - International Edition, 2008, 47, 1098-1101.	13.8	82
34	A Polystyreneâ \in Supported, Highly Recyclable Squaramide Organocatalyst for the Enantioselective Michael Addition of 1,3â \in Dicarbonyl Compounds to βâ \in Nitrostyrenes. Advanced Synthesis and Catalysis, 2012, 354, 2905-2910.	4.3	80
35	Modular Bis(oxazoline) Ligands for Palladium Catalyzed Allylic Alkylation: Unprecedented Conformational Behaviour of a Bis(oxazoline) Palladium 3-1,3-Diphenylallyl Complex. Chemistry - A European Journal, 2002, 8, 4164-4178.	3.3	78
36	Photoswitchable Thioureas for the External Manipulation of Catalytic Activity. Organic Letters, 2014, 16, 1704-1707.	4.6	78

#	Article	IF	CITATIONS
37	Regioselective ring opening of chiral epoxyalcohols by primary amines. Tetrahedron Letters, 1991, 32, 6931-6934.	1.4	77
38	Camphor-Derived, Chelating Auxiliaries for the Highly Diastereoselective Intermolecular Pausonâ^Khand Reaction:Â Experimental and Computational Studies. Journal of Organic Chemistry, 1998, 63, 7037-7052.	3.2	77
39	Polystyrene-Supported TRIP: A Highly Recyclable Catalyst for Batch and Flow Enantioselective Allylation of Aldehydes. ACS Catalysis, 2016, 6, 7647-7651.	11.2	77
40	Towards Continuous Flow, Highly Enantioselective Allylic Amination: Ligand Design, Optimization and Supporting. Advanced Synthesis and Catalysis, 2009, 351, 1539-1556.	4.3	75
41	Covalently immobilized tris(triazolyl)methanol–Cu(<scp>i</scp>) complexes: highly active and recyclable catalysts for CuAAC reactions. Catalysis Science and Technology, 2012, 2, 195-200.	4.1	75
42	Asymmetric Pauson-Khand Cyclization: A Formal Total Synthesis of Natural Brefeldin A. Journal of Organic Chemistry, 1995, 60, 6670-6671.	3.2	74
43	Asymmetric αâ€Amination of Aldehydes Catalyzed by PSâ€Diphenylprolinol Silyl Ethers: Remediation of Catalyst Deactivation for Continuous Flow Operation. Advanced Synthesis and Catalysis, 2012, 354, 2971-2976.	4.3	74
44	1,4-Dialkoxy-1,3-butadiynes. Journal of the American Chemical Society, 1990, 112, 7405-7406.	13.7	73
45	Ready access to stereodefined \hat{l}^2 -hydroxy- \hat{l}^3 -amino acids. Enantioselective synthesis of fully protected cyclohexylstatine. Tetrahedron, 1996, 52, 7063-7086.	1.9	73
46	Toward the understanding of the mechanism and enantioselectivity of the PausonÂKhand reaction. Theoretical and experimental studies. Pure and Applied Chemistry, 2002, 74, 167-174.	1.9	72
47	Asymmetric Visible-Light Photoredox Cross-Dehydrogenative Coupling of Aldehydes with Xanthenes. ACS Catalysis, 2017, 7, 7008-7013.	11.2	72
48	A Quantum Mechanics/Molecular Mechanics Study of the Highly Enantioselective Addition of Diethylzinc to Benzaldehyde Promoted by (R)-2-Piperidino-1,1,2-triphenylethanol. Journal of Organic Chemistry, 2000, 65, 7303-7309.	3.2	70
49	Polystyrene-supported bifunctional resorcinarenes as cheap, metal-free and recyclable catalysts for epoxide/CO ₂ coupling reactions. Green Chemistry, 2017, 19, 5488-5493.	9.0	70
50	Totally Stereocontrolled Intermolecular Pausonâ^Khand Reactions of N-(2-Alkynoyl) Sultams. Journal of the American Chemical Society, 1997, 119, 10225-10226.	13.7	69
51	A New Family of Modular Chiral Ligands for the Catalytic Enantioselective Reduction of Prochiral Ketones. Journal of Organic Chemistry, 1999, 64, 7902-7911.	3.2	69
52	Highly Efficient Synthesis of Enantiomerically Pure (S)-2-Amino-1,2,2-triphenylethanol. Development of a New Family of Ligands for the Highly Enantioselective Catalytic Ethylation of Aldehydes§. Journal of Organic Chemistry, 1999, 64, 3969-3974.	3.2	67
53	Double-Supported Silica-Metal–Organic Framework Palladium Nanocatalyst for the Aerobic Oxidation of Alcohols under Batch and Continuous Flow Regimes. ACS Catalysis, 2015, 5, 472-479.	11.2	67
54	H-Bond-Directing Organocatalyst for Enantioselective [4 + 2] Cycloadditions via Dienamine Catalysis. Organic Letters, 2016, 18, 556-559.	4.6	66

#	Article	IF	Citations
55	Catalytic Asymmetric [8+2] Annulation Reactions Promoted by a Recyclable Immobilized Isothiourea. Angewandte Chemie - International Edition, 2017, 56, 15068-15072.	13.8	66
56	Improved oxidation procedure with aromatic peroxyacids. Tetrahedron Letters, 1981, 22, 3895-3896.	1.4	64
57	A theoretical study on ketene-olefin cycloadditions. 1. Intermolecular reactions. Journal of Organic Chemistry, 1990, 55, 3582-3593.	3.2	64
58	Structurally Simple, Modular Amino Alcohols for the Recognition of Carboxylic Acids. Application to the Development of a New Chiral Solvating Agent. Organic Letters, 2005, 7, 5485-5487.	4.6	64
59	Metal-Mediated Cyclization of Aryl and Benzyl Glycidyl Ethers: A Complete Scenario. Journal of the American Chemical Society, 2008, 130, 16838-16839.	13.7	64
60	Highly Enantioselective Addition of Diethylzinc to Diphenylphosphinoyl Imines under Dual Amino Alcohol/Halosilane Mediationâ€. Organic Letters, 2000, 2, 3157-3159.	4.6	63
61	Asymmetric anti-Mannich reactions in continuous flow. Green Chemistry, 2013, 15, 3295.	9.0	62
62	Modular Amino Alcohol Ligands Containing Bulky Alkyl Groups as Chiral Controllers for Et2Zn Addition to Aldehydes:Â Illustration of a Design Principle. Journal of Organic Chemistry, 2003, 68, 3130-3138.	3.2	60
63	PuPHOS:Â A Synthetically Useful Chiral Bidentate Ligand for the Intermolecular Pausonâ [°] Khand Reaction. Journal of Organic Chemistry, 2004, 69, 8053-8061.	3.2	60
64	Fast and Enantioselective Production of 1â€Arylâ€1â€propanols through a Single Pass, Continuous Flow Process. Advanced Synthesis and Catalysis, 2008, 350, 927-932.	4.3	60
65	Computer assisted, mechanism directed design of a new ligand for the highly enantioselective catalytic addition of diethylzinc to aldehydes. Tetrahedron Letters, 1997, 38, 8773-8776.	1.4	59
66	Straightforward entry to the pipecolic acid nucleus. Enantioselective synthesis of baikiain. Tetrahedron Letters, 2002, 43, 779-782.	1.4	59
67	Design of New Hemilabile (P,S) Ligands for the Highly Diastereoselective Coordination to Alkyne Dicobalt Complexes:Â Application to the Asymmetric Intermolecular Pausonâ^Khand Reaction. Organometallics, 2003, 22, 1868-1877.	2.3	59
68	(S)-2-[(R)-Fluoro(phenyl)methyl]oxirane:  A General Reagent for Determining the ee of α-Chiral Amines. Organic Letters, 2005, 7, 3829-3832.	4.6	59
69	A Highly Active Polymer-Supported Catalyst for Asymmetric Robinson Annulations in Continuous Flow. ACS Catalysis, 2017, 7, 1383-1391.	11.2	59
70	Synthesis of functional cobalt nanoparticles for catalytic applications. Use in asymmetric transfer hydrogenation of ketones. Journal of Materials Chemistry, 2008, 18, 4692.	6.7	58
71	Diastereoselectivity in the intermolecular Pauson-Khand reaction of chiral 2-alkynoates. Tetrahedron, 1995, 51, 4239-4254.	1.9	57
72	Translating the Enantioselective Michael Reaction to a Continuous Flow Paradigm with an Immobilized, Fluorinated Organocatalyst. ACS Catalysis, 2015, 5, 6241-6248.	11,2	56

#	Article	IF	Citations
73	Multigram-scale flow synthesis of the chiral key intermediate of (â^')-paroxetine enabled by solvent-free heterogeneous organocatalysis. Chemical Science, 2019, 10, 11141-11146.	7.4	56
74	Shedding light on the nature of the catalytically active species in photocatalytic reactions using Bi2O3 semiconductor. Nature Communications, 2021, 12, 625.	12.8	56
75	Organocatalytic Enantioselective Continuous-Flow Cyclopropanation. Organic Letters, 2016, 18, 6292-6295.	4.6	55
76	Practical asymmetric version of the intermolecular pauson-khand reaction. Tetrahedron Letters, 1994, 35, 575-578.	1.4	54
77	Asymmetric Approach to $(+)$ - \hat{l}^2 -Cuparenone by Intramolecular Pausonâ-'Khand Reaction. Journal of Organic Chemistry, 1996, 61, 9016-9020.	3.2	54
78	A multipurpose gold(i) precatalyst. Chemical Communications, 2011, 47, 4893.	4.1	54
79	A polystyrene-supported 9-amino(9-deoxy)epi quinine derivative for continuous flow asymmetric Michael reactions. Organic and Biomolecular Chemistry, 2015, 13, 4204-4209.	2.8	54
80	Catalytic Enantioselective Flow Processes with Solidâ€Supported Chiral Catalysts. Chemical Record, 2019, 19, 1872-1890.	5.8	53
81	Enantioselective Construction of Angular Triquinanes through an Asymmetric Intramolecular Pausonâ°Khand Reaction. Synthesis of (+)-15-Nor-pentalenene. Journal of Organic Chemistry, 1997, 62, 4851-4856.	3.2	52
82	Modular Synthesis of Triazoleâ€Based Chiral Iodoarenes for Enantioselective Spirocyclizations. Advanced Synthesis and Catalysis, 2017, 359, 2931-2941.	4.3	52
83	Continuous-flow enantioselective α-aminoxylation of aldehydes catalyzed by a polystyrene-immobilized hydroxyproline. Beilstein Journal of Organic Chemistry, 2011, 7, 1486-1493.	2.2	51
84	Acetyleneâ^'Dicobaltcarbonyl Complexes with Chiral Phosphinooxazoline Ligands:Â Synthesis, Structural Characterization, and Application to Enantioselective Intermolecular Pausonâ^'Khand Reactions. Journal of the American Chemical Society, 2000, 122, 7944-7952.	13.7	50
85	Polystyrene-Supported (2 <i>S</i>)-(â^')-3- <i>exo</i> -Piperazinoisoborneol: An Efficient Catalyst for the Batch and Continuous Flow Production of Enantiopure Alcohols. Organic Letters, 2012, 14, 1816-1819.	4.6	50
86	Continuous Flow Enantioselective Three-Component <i>anti</i> -Mannich Reactions Catalyzed by a Polymer-Supported Threonine Derivative. ACS Catalysis, 2014, 4, 3027-3033.	11.2	50
87	Visible Lightâ€Driven Atom Transfer Radical Addition to Olefins using Bi ₂ O ₃ as Photocatalyst. ChemSusChem, 2015, 8, 1841-1844.	6.8	50
88	Optical control of endogenous receptors and cellular excitability using targeted covalent photoswitches. Nature Communications, 2016, 7, 12221.	12.8	50
89	Camphor-derived alcohols as chiral auxiliaries for asymmetric Pauson-Khand bicyclizations. Enantioselective synthesis of α-methoxyenones. Journal of Organometallic Chemistry, 1992, 433, 305-310.	1.8	49
90	Highly Modular <i>Pâ€Oâ€P</i> Ligands for Asymmetric Hydrogenation. Advanced Synthesis and Catalysis, 2008, 350, 1984-1990.	4.3	49

#	Article	IF	Citations
91	Synthesis of triquinacene derivatives. Tetrahedron, 1986, 42, 1831-1839.	1.9	48
92	Asymmetric induction studies in the intramolecular pauson-khand cyclization of 7-alkoxy-1-hepten-6-ynes. Tetrahedron Letters, 1990, 31, 7505-7508.	1.4	48
93	Convenient synthesis of silylketenes from 1-tert-butoxy-2-silylethynes. Journal of Organic Chemistry, 1990, 55, 395-397.	3.2	48
94	A versatile enantiospecific approach to 3-azetidinols and aziridines. Tetrahedron Letters, 1991, 32, 6935-6938.	1.4	47
95	Asymmetric synthesis of bicyclo [4.3.0] nonan-8-ones by intramolecular Pauson-Khand reaction. Tetrahedron: Asymmetry, 1994, 5, 307-310.	1.8	47
96	A Catalytic Asymmetric Synthesis of Cyclohexylnorstatine. Journal of Organic Chemistry, 1996, 61, 6033-6037.	3.2	47
97	Intramolecular Azideâ^'Alkyne Cycloaddition for the Fast Assembly of Structurally Diverse, Tricyclic 1,2,3-Triazoles. Organic Letters, 2008, 10, 1617-1619.	4.6	47
98	Removing the superfluous: a supported squaramide catalyst with a minimalistic linker applied to the enantioselective flow synthesis of pyranonaphthoquinones. Catalysis Science and Technology, 2016, 6, 4686-4689.	4.1	47
99	New Stereodivergent Approach to 3-Amino-2,3,6-trideoxysugars. Enantioselective Synthesis of Daunosamine, Ristosamine, Acosamine, and Epi-daunosamine. Organic Letters, 2003, 5, 3001-3004.	4.6	46
100	Structural Optimization of Enantiopure 2-Cyclialkylamino-2-aryl-1,1-diphenylethanols as Catalytic Ligands for Enantioselective Additions to Aldehydes. Journal of Organic Chemistry, 2008, 73, 5340-5353.	3.2	46
101	Fineâ€Tunable Tris(triazolyl)methane Ligands for Copper(I)―Catalyzed Azide–Alkyne Cycloaddition Reactions. Advanced Synthesis and Catalysis, 2014, 356, 857-869.	4.3	46
102	A fully recyclable heterogenized Cu catalyst for the general carbene transfer reaction in batch and flow. Chemical Science, 2015, 6, 1510-1515.	7.4	46
103	A short enantioselective synthesis of N-Boc-α-amino acids from epoxy alcohols. Tetrahedron Letters, 1993, 34, 7781-7784.	1.4	45
104	A concise enantioselective synthesis of allylamines and N-boc-Î ² -amino acids. Tetrahedron Letters, 1994, 35, 1589-1592.	1.4	45
105	Highly diastereoselective Pauson-Khand reactions of a stable, internally chelated, dicobalt pentacarbonyl complex of a chiral acetylene thioether. Tetrahedron Letters, 1998, 39, 335-338.	1.4	45
106	Asymmetric Pausonâ^'Khand Reactions Using Camphor-Derived Chelating Thiols as Chiral Controllers. Journal of Organic Chemistry, 2001, 66, 6400-6409.	3.2	45
107	Highly Active Organocatalysts for Asymmetric <i>anti</i> â€Mannich Reactions. Chemistry - A European Journal, 2011, 17, 8780-8783.	3.3	45
108	Reaction of Alkynes and Azides: Not Triazoles Through Copper–Acetylides but Oxazoles Through Copper–Nitrene Intermediates. Chemistry - A European Journal, 2014, 20, 3463-3474.	3.3	45

#	Article	IF	CITATIONS
109	Enantioselective α-amination of 1,3-dicarbonyl compounds in batch and flow with immobilized thiourea organocatalysts. Green Chemistry, 2015, 17, 3122-3129.	9.0	45
110	Telescoped Continuous Flow Synthesis of Optically Active \hat{I}^3 -Nitrobutyric Acids as Key Intermediates of Baclofen, Phenibut, and Fluorophenibut. Organic Letters, 2020, 22, 8122-8126.	4.6	45
111	Low-Energy Pathway for Pausonâ^'Khand Reactions:Â Synthesis and Reactivity of Dicobalt Hexacarbonyl Complexes of Chiral Ynamines. Journal of Organic Chemistry, 2000, 65, 7291-7302.	3.2	44
112	Mechanistic Studies on the Conversion of Dicobalt Octacarbonyl into Colloidal Cobalt Nanoparticles. Langmuir, 2006, 22, 3823-3829.	3.5	44
113	Phosphinite Thioethers Derived from Chiral Epoxides. Modular <i>P</i> , <i>S</i> -Ligands for Pd-Catalyzed Asymmetric Allylic Substitutions. Journal of Organic Chemistry, 2010, 75, 2628-2644.	3.2	44
114	Air- and Water-Tolerant Rare Earth Guanidinium BINOLate Complexes as Practical Precatalysts in Multifunctional Asymmetric Catalysis. Journal of the American Chemical Society, 2014, 136, 8034-8041.	13.7	44
115	A convenient, stereodivergent approach to the enantioselective synthesis of N-Boc-aminoalkyl epoxides. Tetrahedron Letters, 1995, 36, 3019-3022.	1.4	43
116	A Concise Enantioselective Entry to the Synthesis of Deoxy-azasugars. Organic Letters, 2000, 2, 93-95.	4.6	43
117	Enantioselective addition of dimethylzinc to aldehydes: assessment of optimal N,N-substitution for 2-dialkylamino-1,1,2-triphenylethanol ligands. Tetrahedron: Asymmetry, 2004, 15, 2085-2090.	1.8	43
118	Total Synthesis and Biological Activity of 13,14-Dehydro-12-Oxo-Phytodienoic Acids (Deoxy-J1-Phytoprostanes). ChemBioChem, 2005, 6, 276-280.	2.6	42
119	Reversible photocontrolled disintegration of a dimeric tetraurea-calix[4]pyrrole capsule with all-trans appended azobenzene units. Chemical Science, 2014, 5, 4260-4264.	7.4	42
120	Diastereodivergent Enantioselective $[8+2]$ Annulation of Tropones and Enals Catalyzed by N-Heterocyclic Carbenes. Organic Letters, 2019, 21, 3187-3192.	4.6	42
121	An efficient synthesis of -alkoxyethynes. Tetrahedron, 1987, 43, 2311-2316.	1.9	41
122	An enantioselective, stereodivergent approach to anti- and syn-α-hydroxy-β-amino acids from anti-3-amino-1,2-diols. Synthesis of the ready for coupling taxotere® side chain Tetrahedron: Asymmetry, 1996, 7, 243-262.	1.8	41
123	Paraldehyde as an Acetaldehyde Precursor in Asymmetric Michael Reactions Promoted by Siteâ€Isolated Incompatible Catalysts. Chemistry - A European Journal, 2013, 19, 10814-10817.	3.3	41
124	A Theoreticallyâ€Guided Optimization of a New Family of Modular P,Sâ€Ligands for Iridiumâ€Catalyzed Hydrogenation of Minimally Functionalized Olefins. Chemistry - A European Journal, 2014, 20, 12201-12214.	3.3	41
125	Intermolecular Pausonâ^'Khand Reactions of Cyclopropene:  A General Synthesis of Cyclopentanones. Organic Letters, 2001, 3, 3193-3196.	4.6	40
126	A new method for the enantioselective synthesis of N-Boc- $\hat{l}\pm,\hat{l}\pm$ -disubstituted $\hat{l}\pm$ -amino acids. Tetrahedron, 2001, 57, 6367-6374.	1.9	40

#	Article	IF	CITATIONS
127	Fine-Tuning of Modular Amino Alcohol Ligands for the Enantioselective Transfer Hydrogenation of Ketones. European Journal of Organic Chemistry, 2002, 2002, 2337.	2.4	40
128	Bis(tert-butylsulfonyl)acetylene: A highly reactive dienophile. Tetrahedron Letters, 1990, 31, 2173-2176.	1.4	39
129	The dual-catalyzed (amino alcoho/Lewis acid) enantioselective addition of diethylzinc to N-diphenylphosphinoyl imines. Tetrahedron Letters, 1999, 40, 777-780.	1.4	39
130	Polystyrene or Magnetic Nanoparticles as Support in Enantioselective Organocatalysis? A Case Study in Friedel–Crafts Chemistry. Organic Letters, 2016, 18, 1602-1605.	4.6	39
131	An Improved Procedure for the Preparation of 2,2-Dimethyl-4-chromanones. Synthesis, 1980, 1980, 725-727.	2.3	38
132	Synthesis of a 9-Fluorenone Derived $\hat{1}^2$ -Amino Alcohol Ligand Depicting High Catalytic Activity and Pronounced Non-linear Stereochemical Effects. Synthesis, 2000, 2000, 165-176.	2.3	38
133	Ring-Closing Metathesis of Chiral Allylamines. Enantioselective Synthesis of (2S,3R,4S)-3,4-Dihydroxyproline. Journal of Organic Chemistry, 2002, 67, 6896-6901.	3.2	38
134	Tail-Tied Ligands: An Immobilized Analogue of (R)-2-Piperidino-1,1,2-triphenylethanol with Intact High Catalytic Activity and Enantioselectivity. Advanced Synthesis and Catalysis, 2003, 345, 1305-1313.	4.3	38
135	Continuous flow enantioselective arylation of aldehydes with ArZnEt using triarylboroxins as the ultimate source of aryl groups. Beilstein Journal of Organic Chemistry, 2009, 5, 56.	2.2	38
136	Acylative Kinetic Resolution of Alcohols Using a Recyclable Polymer-Supported Isothiourea Catalyst in Batch and Flow. ACS Catalysis, 2018, 8, 1067-1075.	11.2	38
137	Anion–π Interactions in Lightâ€Induced Reactions: Role in the Amidation of (Hetero)aromatic Systems with Activated <i>N</i> à€Aryloxyamides. Chemistry - A European Journal, 2019, 25, 11785-11790.	3.3	38
138	Studies on the pauson-khand reaction. Exclusive formation of angularly fused triquinanes from bicyclo [3.3.0] oct-2-ene and propargyl derivatives. Tetrahedron, 1985, 41, 5995-6003.	1.9	37
139	Prolineâ€Derived Aminotriazole Ligands: Preparation and Use in the Ruthenium atalyzed Asymmetric Transfer Hydrogenation. Advanced Synthesis and Catalysis, 2011, 353, 113-124.	4.3	37
140	Polystyrene-Supported (R)-2-Piperazino-1,1,2-triphenylethanol:Â A Readily Available Supported Ligand with Unparalleled Catalytic Activity and Enantioselectivity. Journal of Organic Chemistry, 2005, 70, 433-438.	3.2	36
141	New Silica-Immobilized Chiral Amino Alcohol for the Enantioselective Addition of Diethylzinc to Benzaldehyde. Organic Letters, 2003, 5, 4333-4335.	4.6	35
142	Phosphinooxazolines Derived from 3â€Aminoâ€1,2â€diols: Highly Efficient Modular <i>Pâ€N</i> Ligands. Advanced Synthesis and Catalysis, 2007, 349, 2265-2278.	4.3	35
143	<i>tert</i> -Butyl Phenyl Sulfoxide: A Traceless Sulfenate Anion Precatalyst. Organic Letters, 2015, 17, 1164-1167.	4.6	35
144	Synthesis and catalytic applications of C ₃ -symmetric tris(triazolyl)methanol ligands and derivatives. Chemical Communications, 2016, 52, 1997-2010.	4.1	35

#	Article	IF	CITATIONS
145	A qualitative molecular mechanics approach to the stereoselectivity of intramolecular Pauson-Khand reactions. Tetrahedron, 1995, 51, 6541-6556.	1.9	34
146	A convenient preparation of N-(2-alkynoyl) derivatives of chiral oxazolidin-2-ones and bornane-10,2-sultam. Tetrahedron: Asymmetry, 1997, 8, 1685-1691.	1.8	34
147	Improving CdSe Quantum Dot/Polymer Solar Cell Efficiency Through the Covalent Functionalization of Quantum Dots: Implications in the Device Recombination Kinetics. Journal of Physical Chemistry C, 2013, 117, 13374-13381.	3.1	34
148	Enantioselective synthesis of unsaturated amino acids using p-methoxybenzylamine as an ammonia equivalent. Tetrahedron: Asymmetry, 1999, 10, 4639-4651.	1.8	33
149	Immobilization of <i>cis</i> â€4â€Hydroxydiphenylprolinol Silyl Ethers onto Polystyrene. Application in the Catalytic Enantioselective Synthesis of 5â€Hydroxyisoxazolidines in Batch and Flow. Advanced Synthesis and Catalysis, 2018, 360, 2914-2924.	4.3	33
150	Decarboxylative Hydroalkylation of Alkynes via Dual Copper-Photoredox Catalysis. ACS Catalysis, 2020, 10, 6402-6408.	11.2	33
151	Copper-Free Intramolecular Alkyne–Azide Cycloadditions Leading to Seven-Membered Heterocycles. Organic Letters, 2011, 13, 5044-5047.	4.6	32
152	Hybrid magnetic materials (Fe3O4–β-carrageenan) as catalysts for the Michael addition of aldehydes to nitroalkenes. Tetrahedron, 2014, 70, 6169-6173.	1.9	32
153	A Simple Method for Preparation of Aryl 2,2,2-Trifluoroethyl Ethers. Synthesis, 1980, 1980, 727-728.	2.3	31
154	New indane derived aminoalcohols as chiral ligands for the catalytic enantioselective addition of diethylzinc to aldehydes. Tetrahedron: Asymmetry, 1997, 8, 1559-1568.	1.8	31
155	Synthesis of enantiopure amino alcohols by ring-opening of epoxyalcohols and epoxyethers with ammonia. Tetrahedron Letters, 2003, 44, 8369-8372.	1.4	31
156	An Enantioselective Recyclable Polystyreneâ€Supported Threonineâ€Derived Organocatalyst for Aldol Reactions. Advanced Synthesis and Catalysis, 2014, 356, 1795-1802.	4.3	31
157	Visibleâ€Lightâ€Promoted Arylation Reactions Photocatalyzed by Bismuth(III) Oxide. European Journal of Organic Chemistry, 2017, 2017, 6986-6990.	2.4	31
158	Enantioselective synthesis of (S)-vigabatrin®. Tetrahedron: Asymmetry, 1997, 8, 2967-2974.	1.8	30
159	Reversing the Stereoselectivity of the Intermolecular Pausonâ^'Khand Reaction:  Formation ofendo-Fused Norbornadiene Adducts. Organic Letters, 2002, 4, 1205-1208.	4.6	30
160	Boron trifluoride-induced reactions of phenylglycidyl ethers: a convenient synthesis of enantiopure, stereodefined fluorohydrins. Tetrahedron Letters, 2004, 45, 6337-6341.	1.4	30
161	TEMPO-mediated, room temperature synthesis of pure CoO nanoparticles. Chemical Communications, 2006, , 1307.	4.1	30
162	Asymmetric cross- and self-aldol reactions of aldehydes in water with a polystyrene-supported triazolylproline organocatalyst. Green Chemistry, 2016, 18, 3507-3512.	9.0	30

#	Article	IF	CITATIONS
163	A theoretical study of the barbier reaction. Tetrahedron Letters, 1990, 31, 7619-7622.	1.4	29
164	Enantioselective synthesis of fully protected anti 3-amino-2-hydroxy butyrates. Tetrahedron: Asymmetry, 1995, 6, 2329-2342.	1.8	29
165	Polystyrene-supported amino alcohol ligands for the heterogeneous asymmetric addition of phenyl zinc reagents to aldehydes. Tetrahedron, 2005, 61, 12111-12120.	1.9	29
166	Highly enantioselective dynamic kinetic resolution and desymmetrization processes by cyclocondensation of chiral aminoalcohols with racemic or prochiral $\hat{\Gamma}$ -oxoacid derivatives. Chemical Communications, 2005, , 1327-1329.	4.1	29
167	Organocatalytic and Halide-Free Synthesis of Glycerol Carbonate under Continuous Flow. ACS Sustainable Chemistry and Engineering, 2021, 9, 4391-4397.	6.7	29
168	Photoredox Dual Catalysis: A Fertile Playground for the Discovery of New Reactivities. European Journal of Inorganic Chemistry, 2021, 2021, 3421-3431.	2.0	29
169	Chiral auxiliary-induced stereocontrol in intramolecular Pauson-Khand reactions leading to angular triquinanes. Tetrahedron, 1996, 52, 14021-14040.	1.9	28
170	Tandem Aminocarbonylation/Pauson-Khand Reaction of Haloacetylenes. Organic Letters, 1999, 1, 1981-1984.	4.6	28
171	Boron Trifluoride-Induced, New Stereospecific Rearrangements of Chiral Epoxy Ethers. Ready Access to Enantiopure 4-(Diarylmethyl)-1,3-dioxolanes and 4,5-Disubstituted Tetrahydrobenzo[c]oxepin-4-ols. Journal of Organic Chemistry, 2006, 71, 1537-1544.	3.2	28
172	"Click chemistry―as a versatile route to synthesize and modulate bent-core liquid crystalline materials. Journal of Materials Chemistry, 2012, 22, 16791.	6.7	28
173	Synthetic applications of di-tert-butoxyethyne, II: New syntheses of squaric, semisquaric and croconic acids. Tetrahedron Letters, 1982, 23, 361-364.	1.4	27
174	Chiral acetylene thioethers: Synthesis and Pauson-Khand reactions. Tetrahedron, 1997, 53, 8651-8664.	1.9	27
175	Addition of Diethylzinc to Dicobalt Hexacarbonyl Complexes of $\hat{l}\pm,\hat{l}^2$ -Acetylenic Aldehydes with Virtually Complete Enantioselectivity. A Formal Synthesis of (+)-Incrustoporin. Organic Letters, 2002, 4, 2381-2383.	4.6	27
176	Aqueous asymmetric transfer hydrogenation using modular hydrophobic aminoalcohols. Tetrahedron: Asymmetry, 2008, 19, 374-378.	1.8	27
177	Polystyreneâ€Supported Enantiopure 1,2â€Diamines: Development of a Most Practical Catalyst for the Asymmetric Transfer Hydrogenation of Ketones. Advanced Synthesis and Catalysis, 2011, 353, 1345-1352.	4.3	27
178	Computationally Guided Design of a Readily Assembled Phosphite–Thioether Ligand for a Broad Range of Pd-Catalyzed Asymmetric Allylic Substitutions. ACS Catalysis, 2018, 8, 3587-3601.	11,2	27
179	Fluorinated chromenes 1: 2,2,2-trifluoroethoxy precocene analogs and their corresponding 3,4-epoxides. Tetrahedron Letters, 1980, 21, 2361-2364.	1.4	26
180	Direct entry to the all-cis tricyclo [5.2.1.04,10] decane (perhydrotriquinacene) skeleton by a cobalt mediated intramolecular cyclization. Tetrahedron Letters, 1985, 26, 2475-2476.	1.4	26

#	Article	IF	Citations
181	A Catalytic Asymmetric Synthesis of N-Boc- \hat{l}^2 -Methylphenylalanines. Journal of Organic Chemistry, 1997, 62, 8425-8431.	3.2	26
182	Studies on the Pauson–Khand reaction of alkynyl sulfoxides. Unexpectedly easy racemization of their dicobalt hexacarbonyl complexes. Tetrahedron: Asymmetry, 1999, 10, 457-471.	1.8	26
183	Photochemistry of 3-Substituted Bicyclo [3.1.0] hex-3-en-2-ones. Regioselective Synthesis of Ortho-Substituted Phenols by Pausonâ 'Khand Reaction. Organic Letters, 2001, 3, 3197-3200.	4.6	26
184	A Purely Synthetic, Diversity Amenable Version of Norephedrine Thiols for the Highly Enantioselective Diethylzinc Addition to Aldehydes. Synlett, 2001, 2001, 1155-1157.	1.8	26
185	Exploring Structural Diversity in Ligand Design: The Aminoindanol Case. Advanced Synthesis and Catalysis, 2008, 350, 2250-2260.	4.3	26
186	Evaluating polymer-supported isothiourea catalysis in industrially-preferable solvents for the acylative kinetic resolution of secondary and tertiary heterocyclic alcohols in batch and flow. Green Chemistry, 2018, 20, 4537-4546.	9.0	26
187	A Straightforward, Highly Stereoselective Synthesis of Protected Isostatine Derivatives. Chemistry - A European Journal, 1996, 2, 1001-1006.	3.3	25
188	The Diels-Alder cycloaddition, an intriguing problem in organic sonochemistry. Ultrasonics Sonochemistry, 1996, 3, 7-13.	8.2	25
189	Enantioselective synthesis of N-Boc-1-naphthylglycine. Tetrahedron: Asymmetry, 1997, 8, 1581-1586.	1.8	25
190	Synthesis of N-Boc-Î ² -Aryl Alanines and of N-Boc-Î ² -Methyl-Î ² -aryl Alanines by Regioselective Ring-Opening of Enantiomerically PureN-Boc-Aziridines. Journal of Organic Chemistry, 1998, 63, 8574-8578.	3.2	25
191	Metalâ€Free Intermolecular Azide–Alkyne Cycloaddition Promoted by Glycerol. Chemistry - A European Journal, 2015, 21, 18706-18710.	3.3	25
192	Nickel-Catalyzed Reductive [2+2] Cycloaddition of Alkynes. Journal of the American Chemical Society, 2018, 140, 17349-17355.	13.7	25
193	Diisopropoxy- and di-tert-butoxyethyne. Tetrahedron, 1981, 37, 1441-1449.	1.9	24
194	New camphor-derived sulfur chiral controllers: Synthesis of (2R-exo)-10-methylthio-2-bornanethiol and (2R-exo)-2,10-bis(methylthio)bornane. Tetrahedron: Asymmetry, 1996, 7, 3553-3558.	1.8	24
195	Ready Access to Bicyclo[5.3.0]decan-1-ones and to Bicyclo[6.3.0]undecan-1-ones by Intramolecular Pausonâ^'Khand Reactions Using a Temporary Sulfur Bridge. Journal of Organic Chemistry, 1998, 63, 3346-3351.	3.2	24
196	Heterobimetallic (Co–W) intermolecular Pauson–Khand reactions: scope and selectivity. Tetrahedron Letters, 2002, 43, 4903-4906.	1.4	24
197	Asymmetric Allylation of Ketones and Subsequent Tandem Reactions Catalyzed by a Novel Polymerâ€6upported Titanium–BINOLate Complex. Chemistry - A European Journal, 2014, 20, 7122-7127.	3.3	24
198	Asymmetric organocatalysts supported on vinyl addition polynorbornenes for work in aqueous media. Catalysis Science and Technology, 2015, 5, 754-764.	4.1	24

#	Article	IF	CITATIONS
199	Synthesis and Application of Magnetic Noyori-Type Ruthenium Catalysts for Asymmetric Transfer Hydrogenation Reactions in Water. ACS Sustainable Chemistry and Engineering, 2016, 4, 2698-2705.	6.7	24
200	<i>cis</i> â€4â€Alkoxydialkyl―and <i>cis</i> â€4â€Alkoxydiarylprolinol Organocatalysts: High Throughput Experimentation (HTE)â€Based and Design of Experiments(DoE)â€Guided Development of a Highly Enantioselective <i>aza</i> â€Michael Addition ofCyclic Imides to α,βâ€Unsaturated Aldehydes Advanced Synthesis and Catalysis, 2017, 359, 2414-2424.	4.3	24
201	Catalytic Asymmetric [8+2] Annulation Reactions Promoted by a Recyclable Immobilized Isothiourea. Angewandte Chemie, 2017, 129, 15264-15268.	2.0	24
202	Evolution of phosphorus–thioether ligands for asymmetric catalysis. Chemical Communications, 2020, 56, 10795-10808.	4.1	24
203	Small-ring cyclic alkynes: ab initio molecular orbital study of cyclohexyne. Journal of Organic Chemistry, 1987, 52, 4160-4163.	3.2	23
204	A broad scope highly efficient synthesis of bis(R-thio)acetylenes. Tetrahedron Letters, 1990, 31, 2169-2172.	1.4	23
205	Divergent stereoselective synthesis of (E) and (Z) O-Alkyl enol ethers. Tetrahedron Letters, 1992, 33, 2863-2866.	1.4	23
206	Thermodynamic and Kinetic Studies of the Liquid Phase Synthesis of tert-Butyl Ethyl Ether Using a Reaction Calorimeter. Industrial & Engineering Chemistry Research, 1995, 34, 3718-3725.	3.7	23
207	A Comparative Thermodynamic and Kinetic Study of the Reaction between Olefins and Light Alcohols Leading to Branched Ethers. Reaction Calorimetry Study of the Formation oftert-Amyl Methyl Ether (TAME) andtert-Butyl Isopropyl Ether (IPTBE). Industrial & Engineering Chemistry Research, 1997, 36, 2012-2018.	3.7	23
208	Highly Enantioselective Crossâ€Aldol Reactions of Acetaldehyde Mediated by a Dual Catalytic System Operating under Site Isolation. Chemistry - A European Journal, 2014, 20, 13089-13093.	3.3	23
209	Stereoselective Inter- and Intramolecular Pauson–Khand Reactions ofN-(2-Alkynoyl) Derivatives of Chiral Oxazolidin-2-ones. European Journal of Organic Chemistry, 1999, 1999, 3459-3478.	2.4	22
210	Chiral cyclopentadiene-mediated approach to enantioselective heterobimetallic Pauson–Khand reactions. Journal of Organometallic Chemistry, 2005, 690, 358-362.	1.8	22
211	Studies on the Amination of Aryl Chlorides with a Monoligated Palladium Catalyst: Kinetic Evidence for a Cooperative Mechanism. Chemistry - A European Journal, 2012, 18, 16510-16516.	3.3	22
212	Optical Control of Enzyme Enantioselectivity in Solid Phase. ACS Catalysis, 2014, 4, 1004-1009.	11.2	22
213	Manganese/Copper Co-catalyzed Electrochemical Wacker–Tsuji-Type Oxidation of Aryl-Substituted Alkenes. Organic Letters, 2020, 22, 7338-7342.	4.6	22
214	A General, Catalytic, and Enantioselective Synthesis of (S)-γ-[(S)-1-Aminoalkyl]-γ-lactonesâ€. Journal of Organic Chemistry, 1998, 63, 3560-3567.	3.2	21
215	The first alkyne-dicobaltcarbonyl complex with a bidentate chiral ligand with Co–P and Co–N coordination. Journal of Organometallic Chemistry, 1999, 585, 53-58.	1.8	21
216	A totally stereocontrolled route to N-methyl- \hat{l}^3 -amino- \hat{l}^2 -hydroxy acids: Asymmetric synthesis of the amino acid component of hapalosin. Tetrahedron Letters, 1999, 40, 9309-9312.	1.4	21

#	Article	IF	Citations
217	Key Nonâ€Metal Ingredients for Cuâ€catalyzed "Click―Reactions in Glycerol: Nanoparticles as Efficient Forwarders. Chemistry - A European Journal, 2016, 22, 18247-18253.	3.3	21
218	Functionalization of A3B-type porphyrin with Fe3O4 MNPs. Supramolecular assemblies, gas sensor and catalytic applications. Catalysis Today, 2018, 306, 268-275.	4.4	21
219	Bis(tert-butylsulfonyl)acetylene as a general synthetic equivalent of alkynes in diels-alder chemistry. II: reductive and alkylative desulfonylations of bicyclic 1-alkyl-2-(tert-butylsulfonyl)ethenes. Tetrahedron Letters, 1991, 32, 4583-4586.	1.4	20
220	TEMPO-Promoted Pausonâ^'Khand Reaction. Single-Electron Activation of Cobaltâ^'Carbonyl Bonds?. Organic Letters, 2005, 7, 3033-3036.	4.6	20
221	Parallel synthesis of modular chiral Schiff base ligands and evaluation in the titatium(IV) catalyzed asymmetric trimethylsilylcyanation of aldehydes. Tetrahedron: Asymmetry, 2006, 17, 151-160.	1.8	20
222	Synthesis of highly modular bis(oxazoline) ligands by Suzuki cross-coupling and evaluation as catalytic ligands. Tetrahedron, 2009, 65, 8199-8205.	1.9	20
223	Molecular ruthenium complexes anchored on magnetic nanoparticles that act as powerful and magnetically recyclable stereospecific epoxidation catalysts. Catalysis Science and Technology, 2013, 3, 706-714.	4.1	20
224	Reaction of di-t-butoxyethyne with Fe2(CO)9: X-ray crystal structure of (tetra-t-butoxycyclopentadienone)tricarbonyliron (0) and an improved formal synthesis of hydrocroconic acid and the croconate dianion. Journal of the Chemical Society Perkin Transactions 1, 1987, 2749-2752.	0.9	19
225	A semiempirical (AM1, MNDO, and MINDO/3) study on the thermolysis of 1-alkynyl ethers. Reaction analysis by correlation of localized molecular orbitals. Journal of Organic Chemistry, 1987, 52, 5532-5538.	3.2	19
226	Alkyne Dicobalt Carbonyl Complexes with Sulfide Ligands. Synthesis, Crystal Structure, and Dynamic Behavior. Organometallics, 1999, 18, 4275-4285.	2.3	19
227	Changing the Palladium Coordination to Phosphinoimidazolines with a Remote Triazole Substituent. Advanced Synthesis and Catalysis, 2011, 353, 3255-3261.	4.3	19
228	Development of Immobilized SPINOL-Derived Chiral Phosphoric Acids for Catalytic Continuous Flow Processes. Use in the Catalytic Desymmetrization of 3,3-Disubstituted Oxetanes. ACS Catalysis, 2020, 10, 14971-14983.	11.2	19
229	Enantioselective Flow Synthesis of Rolipram Enabled by a Telescoped Asymmetric Conjugate Addition–Oxidative Aldehyde Esterification Sequence Using <i>in Situ</i> -Generated Persulfuric Acid as Oxidant. Organic Letters, 2022, 24, 1066-1071.	4.6	19
230	Fluorinated chromenes. III. Synthesis of 3â€fluoroâ€2,2â€dimethylâ€2 <i>H</i> â€chromenes. Journal of Heterocyclic Chemistry, 1980, 17, 1377-1379.	2.6	18
231	Synthesis of Heavily Substituted 1,2-Amino Alcohols in Enantiomerically Pure Form. Journal of Organic Chemistry, 2005, 70, 7426-7428.	3.2	18
232	Suzuki Cross-Coupling on Enantiomerically Pure Epoxides:Â Efficient Synthesis of Diverse, Modular Amino Alcohols from Single Enantiopure Precursors. Journal of Organic Chemistry, 2007, 72, 3253-3258.	3.2	18
233	Synthesis of 2,2-Dimethylchromans by Cyclodehydrohalogenation of Phenols and 1,3-Dichloro-3-methyl-butane. Synthesis, 1979, 1979, 126-127.	2.3	17
234	Synthesis and conformational analysis of glyoxal bis-dithioacetals: 1,4,5,8-tetrathiadecalin (hexahydro-1,4-dithiino[2,3-b]-1,4-dithiin) and -2,3-bis(methylthio)-1,4-dithiane. Tetrahedron, 1986, 42, 2717-2724.	1.9	17

#	Article	IF	Citations
235	A Mild, Selective, PyBOP Mediated Procedure for the Conversion of Primary Amines into Phthalimides. Synthesis, 1998, 1998, 313-316.	2.3	17
236	Tris(pyrrolyl)phosphine-Substituted Acetyleneâ^'Dicobaltcarbonyl Complexes:  Syntheses, Structural Characterization, and Reactivity Studies. Organometallics, 2000, 19, 1704-1712.	2.3	17
237	An intramolecular Pauson–Khand approach to the synthesis of chiral cyclopentadienes. Tetrahedron Letters, 2002, 43, 1023-1026.	1.4	17
238	Low-Temperature Synthesis of CoO Nanoparticles via Chemically Assisted Oxidative Decarbonylation. Chemistry of Materials, 2008, 20, 92-100.	6.7	17
239	Synthesis of triarylmethanols via tandem arylation/oxidation of diarylmethanes. Tetrahedron Letters, 2015, 56, 3604-3607.	1.4	17
240	Desymmetrisation of <i>meso</i> -diones promoted by a highly recyclable polymer-supported chiral phosphoric acid catalyst. RSC Advances, 2018, 8, 6910-6914.	3.6	17
241	Stereoselectivity in the intermolecular Pauson–Khand reaction of electron-deficient terminal alkynes. Tetrahedron Letters, 2004, 45, 5387-5390.	1.4	16
242	Catalytic Batch and Continuous Flow Production of Highly Enantioenriched Cyclohexane Derivatives with Polymer-Supported Diarylprolinol Silyl Ethers. Synlett, 2011, 2011, 464-468.	1.8	16
243	Expedient Synthesis of 1,3-Cyclobutanedione via Thermal Dimerization oft-Butoxyethyne. Synthesis, 1985, 1118-1120.	2.3	15
244	Bis(tert-butylsulfonyl)acetylene as a general synthetic equivalent of alkynes in diels-alder chemistry. I: highly selective reduction and alkylating monodesulfonylation of z-1,2-bis(tert-butylsulfonyl)ethenes. Tetrahedron Letters, 1991, 32, 4579-4582.	1.4	15
245	A convenient synthesis of hexacarbonyldicobalt complexes of chiral (non-racemic) terminal alkoxyacetylenes. Journal of Organometallic Chemistry, 1994, 470, C12-C14.	1.8	15
246	Reaction Calorimetry Study of the Liquid-Phase Synthesis of tert-Butyl Methyl Ether. Industrial & Engineering Chemistry Research, 1994, 33, 2578-2583.	3.7	15
247	Amino thiols versus amino alcohols in the asymmetric alkynylzinc addition to aldehydes. Tetrahedron: Asymmetry, 2009, 20, 1413-1418.	1.8	15
248	Covalent Heterogenization of Asymmetric Catalysts on Polymers and Nanoparticles. Catalysis By Metal Complexes, 2010, , 123-170.	0.6	15
249	A Computational Study on the Role of Chiral <i>N</i> â€Oxides in Enantioselective Pauson–Khand Reactions. Chemistry - A European Journal, 2011, 17, 10050-10057.	3.3	15
250	Deciphering the roles of multiple additives in organocatalyzed Michael additions. Chemical Communications, 2016, 52, 6821-6824.	4.1	15
251	Synthesis of croconic and hydrocroconic acids from di-t-butoxyethyne. Electrochemical demetallation of a cyclopentadienyl organocobalt complex. Journal of the Chemical Society Chemical Communications, 1982, , 1305-1306.	2.0	14
252	Small-ring cyclic alkynes: ab initio molecular orbital study of cyclopentyne. Journal of the American Chemical Society, 1986, 108, 6884-6888.	13.7	14

#	Article	IF	Citations
253	A convergent, stereocontrolled synthesis of C2-symmetrical and pseudosymmetrical sulfur-tethered bis(amino alcohols). Tetrahedron Letters, 1999, 40, 3913-3916.	1.4	14
254	Bornane-2,10-sultam: a highly efficient chiral controller and mechanistic probe for the intermolecular Pauson–Khand reaction. Tetrahedron: Asymmetry, 2001, 12, 1837-1850.	1.8	14
255	Enantiodivergent, Catalytic Asymmetric Synthesis of Î ³ -Amino Vinyl Sulfones. Journal of Organic Chemistry, 2003, 68, 5075-5083.	3.2	14
256	5,5′-Bistriazoles as axially chiral, multidentate ligands: synthesis, configurational stability and catalytic application of their scandium(⟨scp⟩iii⟨/scp⟩) complexes. Catalysis Science and Technology, 2017, 7, 4830-4841.	4.1	14
257	A versatile, immobilized gold catalyst for the reductive amination of aldehydes in batch and flow. Reaction Chemistry and Engineering, 2018, 3, 714-721.	3.7	14
258	Fluorinated chromenes. Synthesis of 6,7â€dimethoxyâ€2â€methylâ€2â€trifluoromethylâ€2 <i>H</i> a€thromene. Journal of Heterocyclic Chemistry, 1980, 17, 207-208.	2.6	13
259	Generation and cyclotrimerization of 1,4-dioxacyclohexyne (p-dioxyne). Journal of the Chemical Society Chemical Communications, 1988, , 942-943.	2.0	13
260	A Concise Enantioselective Synthesis of N-Boc-(S)-2-Aminosuberic Acid. Synthetic Communications, 1994, 24, 1231-1238.	2.1	13
261	A convenient synthesis of chiral 2-alkynyl-1,3-oxazolines. Tetrahedron: Asymmetry, 2000, 11, 4407-4416.	1.8	13
262	Chiral derivatives of semisquaric acid as new modular ligands for asymmetric catalysis. Tetrahedron: Asymmetry, 2003, 14, 1747-1752.	1.8	13
263	Ligand Anatomy:  Probing Remote Substituent Effects in Asymmetric Catalysis through NMR and Kinetic Analysis. Organic Letters, 2006, 8, 3895-3898.	4.6	13
264	Conformational analysis of 2,3-dialkoxy-1,4-dioxanes. Tetrahedron, 1983, 39, 3959-3963.	1.9	12
265	A Convenient Procedure for the Synthesis of Propargyl Ethers Derived from Secondary Alcohols. Synthesis, 1988, 1988, 707-709.	2.3	12
266	Efficient synthesis of chiral acetylene dithioethers in enantiomerically pure form. Tetrahedron: Asymmetry, 1997, 8, 1575-1580.	1.8	12
267	Cross-coupling of a functionalized highly pyramidalized alkene: DSC and NMR study of the [2+2] retrocycloaddition of cyclobutane cross products, hyperstability and pyramidalization of the formed dienes. Tetrahedron, 2001, 57, 8511-8520.	1.9	12
268	Synthesis, Application and Kinetic Studies of Chiral Phosphiteâ€Oxazoline Palladium Complexes as Active and Selective Catalysts in Intermolecular Heck Reactions. Advanced Synthesis and Catalysis, 2018, 360, 1650-1664.	4.3	12
269	Indene Derived Phosphorusâ€Thioether Ligands for the Irâ€Catalyzed Asymmetric Hydrogenation of Olefins with Diverse Substitution Patterns and Different Functional Groups. Advanced Synthesis and Catalysis, 2021, 363, 4561-4574.	4.3	12
270	A MINDO/3 study on the monoelectronic reduction of carbon monoxide. Computational and Theoretical Chemistry, 1983, 105, 91-97.	1.5	11

#	Article	IF	CITATIONS
271	Chiral (E,E)-1,4-dialkoxy-1,3-butadienes. 1. Stereoselective synthesis. Tetrahedron Letters, 1997, 38, 6921-6924.	1.4	11
272	Enantioselective synthesis of N-Boc-2,2-dimethyloxazolidine-5-carbaldehydes, versatile precursors of dipeptide isosteres. Tetrahedron Letters, 1998, 39, 1233-1236.	1.4	11
273	A highly active organocatalyst for the asymmetric \hat{l} ±-aminoxylation of aldehydes and \hat{l} ±-hydroxylation of ketones. RSC Advances, 2012, 2, 6164.	3.6	11
274	Nonâ€Covalent Immobilization of Rare Earth Heterobimetallic Frameworks and their Reactivity in an Asymmetric Michael Addition. Advanced Synthesis and Catalysis, 2014, 356, 1243-1254.	4.3	11
275	A Bis(Triazolecarboxamido) Ligand for Enantio―and Regioselective Molybdenum atalyzed Asymmetric Allylic Alkylation Reactions. Advanced Synthesis and Catalysis, 2014, 356, 711-717.	4.3	11
276	Development of <i>C</i> ₂ -Symmetric Chiral Bifunctional Triamines: Synthesis and Application in Asymmetric Organocatalysis. Organic Letters, 2018, 20, 4806-4810.	4.6	11
277	Continuous Flow Preparation of Enantiomerically Pure BINOL(s) by Acylative Kinetic Resolution. Advanced Synthesis and Catalysis, 2020, 362, 1370-1377.	4.3	11
278	Catalytic Ring-Opening Copolymerization of Fatty Acid Epoxides: Access to Functional Biopolyesters. Macromolecules, 2022, 55, 2566-2573.	4.8	11
279	Acetylene diethers. Tetrahedron, 1982, 38, 1505-1508.	1.9	10
280	Can N-acylazetones ever be obtained? The reaction between di-t-butoxyethyne and benzoyl isocyanate leading to 2-phenyl-4,5-di-t-butoxy-1,3-oxazin-6-one. Journal of the Chemical Society Perkin Transactions II, 1986, , 961-967.	0.9	10
281	A Convenient Laboratory Preparation of Propargylthiol and Its Derivatives. Synthesis, 1997, 1997, 518-520.	2.3	10
282	Enantioselective Synthesis oferythroâ€Î²â€Hydroxyglutamic Acid. Synthetic Communications, 2005, 35, 289-297.	2.1	10
283	Origin of enantioselectivity in asymmetric Pauson–Khand reactions catalyzed by [(BINAP)Co2(CO)6]â~†. Journal of Molecular Catalysis A, 2010, 324, 127-132.	4.8	10
284	Potassium fluoride: A convenient, non-covalent support for the immobilization of organocatalysts through strong hydrogen bonds. Journal of Catalysis, 2013, 305, 169-178.	6.2	10
285	Assessing the Role of Site Isolation and Compartmentalization in Packed-Bed Flow Reactors for Processes Involving Wolf-and-Lamb Scenarios. ACS Catalysis, 2021, 11, 6234-6242.	11.2	10
286	Development of a robust immobilized organocatalyst for the redox-neutral mitsunobu reaction. Green Chemistry, 2021, 23, 8859-8864.	9.0	10
287	Continuous organocatalytic flow synthesis of 2-substituted oxazolidinones using carbon dioxide. Green Chemistry, 0, , .	9.0	10
288	MNDO-Cl theoretical study of $[2+2]$ cycloaddition of cyclopentyne with ethylene. Journal of the Chemical Society Perkin Transactions II, 1986, , 613-617.	0.9	9

#	Article	IF	Citations
289	Generation and reactions of new ether and acetal functionalized tricyclo $[3.3.0.03,7]$ oct- $1(5)$ -ene derivatives. DSC and NMR studies on the $[2+2]$ retrocycloaddition of several cyclobutane dimers. Tetrahedron, 2007, 63, 4669-4679.	1.9	9
290	A Fluorous Proline Organocatalyst with Acetoneâ€Dependent Aldolase Behavior. European Journal of Organic Chemistry, 2013, 2013, 6254-6258.	2.4	9
291	Calcium carbonate as heterogeneous support for recyclable organocatalysts. Journal of Catalysis, 2021, 393, 107-115.	6.2	9
292	Experimental and theoretical studies on the diastereoselective diels-alder reactions of chiral 1-alkoxy-1,3-butadienes. I: Parent system and 4-substituted derivatives. Tetrahedron, 1997, 53, 13427-13448.	1.9	8
293	A Convenient Stereoselective Synthesis of (1R,2S,3R,4S)-3-(Neopentyloxy)isoborneol. Helvetica Chimica Acta, 1998, 81, 78-84.	1.6	8
294	Modular optimization of enantiopure epoxide-derived P,S-ligands for rhodium-catalyzed hydrogenation of dehydroamino acids. Tetrahedron, 2011, 67, 4161-4168.	1.9	8
295	Conformational analysis of -2,3-diaryloxy-1,4-dioxanes. A tool for discriminating between steric and electronic effects in the position of. Tetrahedron, 1985, 41, 3785-3789.	1.9	7
296	An enantioselective entry to linear, C2-symmetrical and pseudosymmetrical 1,6-diamino-2,5-diols. Tetrahedron Letters, 1999, 40, 3917-3920.	1.4	7
297	Direct Copper(I)-Catalyzed Cycloaddition of Organic Azides with TMS-Protected Alkynes. Synlett, 2010, 2010, 1873-1877.	1.8	7
298	Work-Up-Free Deprotection of Borane Complexes of Phosphines, Phosphites, and Phosphinites with Polymer-Supported Amines. Synlett, 2006, 2006, 2585-2588.	1.8	6
299	Two Distinct Conformations of GABA Locked by Embedding in the Bicyclo[3.1.0]hexane Core Structure. ChemMedChem, 2011, 6, 1792-1795.	3.2	6
300	Di-platinum complexes containing thiolato-urea ligands: structural and anion binding studies. Dalton Transactions, 2009, , 2974.	3.3	5
301	Clickable complexing agents: functional crown ethers for immobilisation onto polymers and magnetic nanoparticles. RSC Advances, 2015, 5, 87352-87363.	3.6	5
302	Separating Enthalpic, Configurational, and Solvation Entropic Components in Host–Guest Binding: Application to Cucurbit[7]uril Complexes through a Full ⟨i⟩In Silico⟨/i⟩ Approach via Water Nanodroplets. Journal of Physical Chemistry B, 2020, 124, 10486-10499.	2.6	5
303	Tricyclic Triazoles as if (sub) 1 (/sub) Receptor Antagonists for Treating Pain. Journal of Medicinal Chemistry, 2021, 64, 5157-5170.	6.4	5
304	The Dual Effect of Coordinating \hat{a} NH Groups and Light in the Electrochemical CO 2 Reduction with Pyridylamino Co Complexes. ChemElectroChem, 0, , .	3.4	5
305	Chiral (E,E)-1,4-dialkoxy-1,3-butadienes. 2. Conformational studies and Diels-Alder reactions with symmetric dienophiles. Tetrahedron, 1999, 55, 3959-3986.	1.9	4
306	A site isolation-enabled organocatalytic approach to enantiopure \hat{I}^3 -amino alcohol drugs. Tetrahedron, 2018, 74, 3943-3946.	1.9	4

#	Article	IF	CITATIONS
307	Model theoretical study of $2+2$ cycloadditions of dialkoxyethynes with heterocumulenes. Journal of the Chemical Society Perkin Transactions II, 1987, , 151-158.	0.9	3
308	Small-ring cyclic alkynes: ab initio molecular orbital study of 1,4-dioxacyclohexyne (p-dioxyne). Journal of the American Chemical Society, 1987, 109, 5600-5605.	13.7	3
309	Conformational behaviour of trans-2,3-bis(r-thio)-1,4-dioxanes. Tetrahedron Letters, 1990, 31, 2755-2758.	1.4	3
310	Reusable shuttles for exchangeable functional cargos: Reversibly assembled, magnetically powered organocatalysts for asymmetric aldol reactions. Tetrahedron, 2019, 75, 130592.	1.9	3
311	Heterogeneous Olefin Aziridination Reactions Catalyzed by Polymerâ€Bound Tris(triazolyl)methane Copper Complexes. European Journal of Inorganic Chemistry, 2021, 2021, 3727-3730.	2.0	3
312	An automated microfluidic platform for the screening and characterization of novel hepatitis B virus capsid assembly modulators. Analytical Methods, 2022, 14, 135-146.	2.7	3
313	Accelerating the Photocatalytic Atom Transfer Radical Addition Reaction Induced by Bi ₂ O ₃ with Amines: Experiment and Computation. ChemCatChem, 2022, 14, .	3.7	3
314	Assessing the Recyclability of Supramolecularly Assembled Organocatalytic Species: A Theoretical Insight. Israel Journal of Chemistry, 2020, 60, 475-484.	2.3	2
315	Organocatalysis in Continuous Flow for Drug Discovery. Topics in Medicinal Chemistry, 2021, , 241-274.	0.8	2
316	Stereochemical assignment of 2-amino-1,2,3,4-tetrahydro-1-naphthalenols via oxazolidin-2-one derivatives. Canadian Journal of Chemistry, 1987, 65, 868-872.	1.1	1
317	Highly Enantioselective Dynamic Kinetic Resolution and Desymmetrization Processes by Cyclocondensation of Chiral Aminoalcohols with Racemic or Prochiral Î-Oxoacid Derivatives ChemInform, 2005, 36, no.	0.0	1
318	Toward the Understanding of Mechanism and Enantioselectivity of the Pauson—Khand Reaction: Theoretical and Experimental Studies. ChemInform, 2002, 33, 270-270.	0.0	1
319	Concentration Effect in the Asymmetric Michael Addition of Acetone to \hat{l}^2 -Nitrostyrenes Catalyzed by Primary Amine Thioureas. Synthesis, 2016, 49, 319-325.	2.3	1
320	Structure of trans-1,4,5,8-tetrathiadecalin (hexahydro-1,4-dithiino-[2,3-b]-1,4-dithiin). Acta Crystallographica Section C: Crystal Structure Communications, 1987, 43, 1976-1978.	0.4	0
321	Crystal structure of (5S)-2-[(1R,2S,3R,4S)-3-(2,2-dimethylpropoxy)-1,7,7-trimethylbicyclo-[2.2.1]heptyl-2-oxy]-7-oxabicyclo[3.3.0]oct-C22H34O4. Zeitschrift Fur Kristallographie - Crystalline Materials, 1993, 203, 107-109.	1 @r 83-on∈	2,0
322	Ring-Closing Metathesis of Chiral Allylamines. Enantioselective Synthesis of (2S,3R,4S)-3,4-Dihydroxyproline ChemInform, 2003, 34, no.	0.0	0
323	Modular Amino Alcohol Ligands Containing Bulky Alkyl Groups as Chiral Controllers for Et2Zn Addition to Aldehydes: Illustration of a Design Principle ChemInform, 2003, 34, no.	0.0	0
324	Synthesis of Enantiopure Amino Alcohols by Ring-Opening of Epoxyalcohols and Epoxyethers with Ammonia ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	CITATIONS
325	2-Piperidino-1,1,2-triphenylethanol: A Highly Effective Catalyst for the Enantioselective Arylation of Aldehydes ChemInform, 2004, 35, no.	0.0	0
326	Stereoselectivity in the Intermolecular Pausonâ€"Khand Reaction of Electron-Deficient Terminal Alkynes ChemInform, 2004, 35, no.	0.0	0
327	Enantioselective Addition of Dimethylzinc to Aldehydes: Assessment of Optimal N,N-Substitution for 2-Dialkylamino-1,1,2-triphenylethanol Ligands ChemInform, 2004, 35, no.	0.0	0
328	Boron Trifluoride Induced Reactions of Phenylglycidyl Ethers: A Convenient Synthesis of Enantiopure, Stereodefined Fluorohydrins ChemInform, 2004, 35, no.	0.0	0
329	Polystyrene-Supported (R)-2-Piperazino-1,1,2-triphenylethanol: A Readily Available Supported Ligand with Unparalleled Catalytic Activity and Enantioselectivity ChemInform, 2005, 36, no.	0.0	O
330	(S)-2-[(R)-Fluoro(phenyl)methyl] oxirane: A General Reagent for Determining the e.e. of \hat{l}_{\pm} -Chiral Amines ChemInform, 2006, 37, no.	0.0	0
331	Synthesis of Heavily Substituted 1,2-Amino Alcohols in Enantiomerically Pure Form ChemInform, 2006, 37, no.	0.0	0
332	Addition of Diethylzinc to Dicobalt Hexacarbonyl Complexes of $\hat{l}_{\pm},\hat{l}^2\hat{a}\in A$ cetylenic Aldehydes with Virtually Complete Enantioselectivity. A Formal Synthesis of $(+)\hat{a}\in A$ cetylenic Aldehydes with Virtually Complete Enantioselectivity. A Formal Synthesis of $(+)\hat{a}\in A$ cetylenic Aldehydes with Virtually Complete Enantioselectivity.	0.0	0
333	ICIQ: A 15â€ Y ear Journey. European Journal of Inorganic Chemistry, 2018, 2018, 3357-3360.	2.0	0