Valérie Borde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/727375/publications.pdf Version: 2024-02-01

VALÃORIE RORDE

#	Article	IF	CITATIONS
1	The Zip4 protein directly couples meiotic crossover formation to synaptonemal complex assembly. Genes and Development, 2022, 36, 53-69.	5.9	22
2	A POLD3/BLM dependent pathway handles DSBs in transcribed chromatin upon excessive RNA:DNA hybrid accumulation. Nature Communications, 2022, 13, 2012.	12.8	20
3	The Pif1 helicase is actively inhibited during meiotic recombination which restrains gene conversion tract length. Nucleic Acids Research, 2021, 49, 4522-4533.	14.5	16
4	Molecular basis of the dual role of the Mlh1-Mlh3 endonuclease in MMR and in meiotic crossover formation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
5	Methods to Map Meiotic Recombination Proteins in Saccharomyces cerevisiae. Methods in Molecular Biology, 2021, 2153, 295-306.	0.9	7
6	Coupling DNA Damage and Repair: an Essential Safeguard during Programmed DNA Double-Strand Breaks?. Trends in Cell Biology, 2020, 30, 87-96.	7.9	20
7	Genetic evidence for the involvement of mismatch repair proteins, PMS2 and MLH3, in a late step of homologous recombination. Journal of Biological Chemistry, 2020, 295, 17460-17475.	3.4	18
8	Exo1 recruits Cdc5 polo kinase to MutLÎ ³ to ensure efficient meiotic crossover formation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30577-30588.	7.1	28
9	Regulation of the MLH1–MLH3 endonuclease in meiosis. Nature, 2020, 586, 618-622.	27.8	88
10	Special issue on "recent advances in meiosis from DNA replication to chromosome segregation― Chromosoma, 2019, 128, 177-180.	2.2	0
11	Crossover recombination and synapsis are linked by adjacent regions within the N terminus of the Zip1 synaptonemal complex protein. PLoS Genetics, 2019, 15, e1008201.	3.5	31
12	Crossing and zipping: molecular duties of the ZMM proteins in meiosis. Chromosoma, 2019, 128, 181-198.	2.2	114
13	A meiotic XPF–ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation. Genes and Development, 2018, 32, 283-296.	5.9	98
14	The PHD finger protein Spp1 has distinct functions in the Set1 and the meiotic DSB formation complexes. PLoS Genetics, 2018, 14, e1007223.	3.5	41
15	Concerted action of the MutLβ heterodimer and Mer3 helicase regulates the global extent of meiotic gene conversion. ELife, 2017, 6, .	6.0	67
16	Chromosome Synapsis Alleviates Mek1-Dependent Suppression of Meiotic DNA Repair. PLoS Biology, 2016, 14, e1002369.	5.6	95
17	The CAF-1 and Hir Histone Chaperones Associate with Sites of Meiotic Double-Strand Breaks in Budding Yeast. PLoS ONE, 2015, 10, e0125965.	2.5	13
18	Meiosis: Early DNA Double-Strand Breaks Pave the Way for Inter-Homolog Repair. Developmental Cell, 2015, 32, 663-664.	7.0	8

Valérie Borde

#	Article	IF	CITATIONS
19	A Timeless but Timely Connection between Replication and Recombination. Cell, 2014, 158, 697-698.	28.9	9
20	Spp1, a Member of the Set1 Complex, Promotes Meiotic DSB Formation in Promoters by Tethering Histone H3K4 Methylation Sites to Chromosome Axes. Molecular Cell, 2013, 49, 43-54.	9.7	179
21	Programmed induction of DNA double strand breaks during meiosis: setting up communication between DNA and the chromosome structure. Current Opinion in Genetics and Development, 2013, 23, 147-155.	3.3	116
22	Budding Yeast ATM/ATR Control Meiotic Double-Strand Break (DSB) Levels by Down-Regulating Rec114, an Essential Component of the DSB-machinery. PLoS Genetics, 2013, 9, e1003545.	3.5	115
23	Differential Association of the Conserved SUMO Ligase Zip3 with Meiotic Double-Strand Break Sites Reveals Regional Variations in the Outcome of Meiotic Recombination. PLoS Genetics, 2013, 9, e1003416.	3.5	90
24	The spatial regulation of meiotic recombination hotspots: Are all DSB hotspots crossover hotspots?. Experimental Cell Research, 2012, 318, 1347-1352.	2.6	65
25	Interplay between modifications of chromatin and meiotic recombination hotspots. Biology of the Cell, 2012, 104, 51-69.	2.0	35
26	Genome-Wide Analysis of Heteroduplex DNA in Mismatch Repair–Deficient Yeast Cells Reveals Novel Properties of Meiotic Recombination Pathways. PLoS Genetics, 2011, 7, e1002305.	3.5	128
27	Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO Journal, 2009, 28, 99-111.	7.8	329
28	Double functions for the Mre11 complex during DNA double-strand break repair and replication. International Journal of Biochemistry and Cell Biology, 2009, 41, 1249-1253.	2.8	23
29	Gel Electrophoresis Assays for Analyzing DNA Double-Strand Breaks in Saccharomyces cerevisiae at Various Spatial Resolutions. Methods in Molecular Biology, 2009, 557, 117-142.	0.9	49
30	Genome-wide Expression Profiling, In Vivo DNA Binding Analysis, and Probabilistic Motif Prediction Reveal Novel Abf1 Target Genes during Fermentation, Respiration, and Sporulation in Yeast. Molecular Biology of the Cell, 2008, 19, 2193-2207.	2.1	29
31	Mapping Meiotic Single-Strand DNA Reveals a New Landscape of DNA Double-Strand Breaks in Saccharomyces cerevisiae. PLoS Biology, 2007, 5, e324.	5.6	202
32	Excess Single-Stranded DNA Inhibits Meiotic Double-Strand Break Repair. PLoS Genetics, 2007, 3, e223.	3.5	25
33	Genome-Wide Redistribution of Meiotic Double-Strand Breaks in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2007, 27, 1868-1880.	2.3	90
34	The multiple roles of the Mre11 complex for meiotic recombination. Chromosome Research, 2007, 15, 551-563.	2.2	118
35	The control of Spo11's interaction with meiotic recombination hotspots. Genes and Development, 2005, 19, 255-269.	5.9	97
36	Association of Mre11p with Double-Strand Break Sites during Yeast Meiosis. Molecular Cell, 2004, 13, 389-401.	9.7	129

Valérie Borde

#	Article	IF	CITATIONS
37	Correlation between premeiotic DNA replication and chromatin transition at yeast recombination initiation sites. Nucleic Acids Research, 2003, 31, 4085-4090.	14.5	45
38	Réplication et recombinaison vont de pair pendant la méiose Medecine/Sciences, 2001, 17, 482.	0.2	0
39	Direct Coupling Between Meiotic DNA Replication and Recombination Initiation. Science, 2000, 290, 806-809.	12.6	231
40	Use of a Recombination Reporter Insert To Define Meiotic Recombination Domains on Chromosome III of <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1999, 19, 4832-4842.	2.3	98
41	The mapping of DNA topoisomerase sites in vivo: A tool to enlight the functions of topoisomerases. Biochimie, 1998, 80, 223-233.	2.6	14
42	DNA topoisomerase II sites in the histone H4 gene during the highly synchronous cell cycle of Physarum polycephalum [published erratum appears in Nucleic Acids Res 1998 Oct 15;26(20):following 4789]. Nucleic Acids Research, 1998, 26, 2042-2049.	14.5	6