Wenju Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/727289/publications.pdf

Version: 2024-02-01

246 papers

21,212 citations

70 h-index 135 g-index

275 all docs

275 docs citations

times ranked

275

16045 citing authors

#	Article	IF	Citations
1	Unveiling the dipole synergic effect of biogenic and anthropogenic emissions on ozone concentrations. Science of the Total Environment, 2022, 818, 151722.	8.0	20
2	Diversity of ENSOâ€Related Surface Temperature Response in Future Projection in CMIP6 Climate Models: Climate Change Scenario Versus ENSO Intensity. Geophysical Research Letters, 2022, 49, .	4.0	5
3	Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nature Climate Change, 2022, 12, 228-231.	18.8	85
4	Improved Simulation of ENSO Variability Through Feedback From the Equatorial Atlantic in a Pacemaker Experiment. Geophysical Research Letters, 2022, 49, .	4.0	5
5	Threat by marine heatwaves to adaptive large marine ecosystems in an eddy-resolving model. Nature Climate Change, 2022, 12, 179-186.	18.8	32
6	El Ni $ ilde{A}\pm$ o/Southern Oscillation inhibited by submesoscale ocean eddies. Nature Geoscience, 2022, 15, 112-117.	12.9	16
7	Indonesian Throughflow Variability and Linkage to ENSO and IOD in an Ensemble of CMIP5 Models. Journal of Climate, 2022, 35, 3161-3178.	3.2	10
8	Emergence of climate change in the tropical Pacific. Nature Climate Change, 2022, 12, 356-364.	18.8	34
9	Local meridional circulation changes contribute to a projected slowdown of the Indian Ocean Walker circulation. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	4
10	Winter particulate pollution severity in North China driven by atmospheric teleconnections. Nature Geoscience, 2022, 15, 349-355.	12.9	37
11	Increased variability of the western Pacific subtropical high under greenhouse warming. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	29
12	Will Increasing Climate Model Resolution Be Beneficial for ENSO Simulation?. Geophysical Research Letters, 2022, 49, .	4.0	7
13	Future Southern Ocean warming linked to projected ENSO variability. Nature Climate Change, 2022, 12, 649-654.	18.8	23
14	Decadal coupling between storm tracks and sea surface temperature in the Southern Hemisphere midlatitudes. Climate Dynamics, 2021, 56, 783-798.	3.8	0
15	Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nature Climate Change, 2021, 11, 27-32.	18.8	79
16	Remote Influence of the Midlatitude South Atlantic Variability in Spring on Antarctic Summer Sea Ice. Geophysical Research Letters, 2021, 48, .	4.0	8
17	Role of the eastern subtropical North Pacific Ocean on the El Niño's transition processes. Climate Dynamics, 2021, 56, 1285-1301.	3.8	2
18	Generation of westerly wind bursts by forcing outside the tropics. Scientific Reports, 2021, 11, 912.	3.3	7

#	Article	IF	CITATIONS
19	Weakened ENSOâ€Ningaloo Niño/Niña Teleconnection Under Greenhouse Warming. Geophysical Research Letters, 2021, 48, e2020GL091326.	4.0	1
20	Changing Lengths of the Four Seasons by Global Warming. Geophysical Research Letters, 2021, 48, e2020GL091753.	4.0	62
21	Impacts of Low-Frequency Internal Climate Variability and Greenhouse Warming on El Niño–Southern Oscillation. Journal of Climate, 2021, 34, 2205-2218.	3.2	11
22	Simulated Thermocline Tilt Over the Tropical Indian Ocean and Its Influence on Future Sea Surface Temperature Variability. Geophysical Research Letters, 2021, 48, e2020GL091902.	4.0	8
23	Is Preconditioning Effect On Strong Positive Indian Ocean Dipole by a Preceding Central Pacific El Niño Deterministic?. Geophysical Research Letters, 2021, 48, e2020GL092223.	4.0	2
24	Greenhouse warming intensifies north tropical Atlantic climate variability. Science Advances, 2021, 7, .	10.3	26
25	Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2021, 2, 628-644.	29.7	197
26	Interâ∈Basin Interaction Between Variability in the South Atlantic Ocean and the El Niño/Southern Oscillation. Geophysical Research Letters, 2021, 48, e2021GL093338.	4.0	10
27	Tropical teleconnection impacts on Antarctic climate changes. Nature Reviews Earth & Environment, 2021, 2, 680-698.	29.7	85
28	Weakened Antarctic Dipole Under Global Warming in CMIP6 Models. Geophysical Research Letters, 2021, 48, e2021GL094863.	4.0	6
29	Enhanced North Pacific impact on El Ni $ ilde{A}\pm o/S$ outhern Oscillation under greenhouse warming. Nature Climate Change, 2021, 11, 840-847.	18.8	34
30	Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects. Science, 2021, 374, eaay9165.	12.6	92
31	Response of the positive Indian Ocean dipole to climate change and impact on Indian summer monsoon rainfall., 2021,, 413-432.		1
32	Stronger Increase in the Frequency of Extreme Convective than Extreme Warm El Niño Events under Greenhouse Warming. Journal of Climate, 2020, 33, 675-690.	3.2	18
33	Change in strong Eastern Pacific El Niño events dynamics in the warming climate. Climate Dynamics, 2020, 54, 901-918.	3.8	19
34	The Pacific Decadal Oscillation less predictable under greenhouse warming. Nature Climate Change, 2020, 10, 30-34.	18.8	60
35	Triggering the Indian Ocean Dipole From the Southern Hemisphere. Geophysical Research Letters, 2020, 47, e2020GL088648.	4.0	23
36	Essential Role of the Midlatitude South Atlantic Variability in Altering the Southern Hemisphere Summer Storm Tracks. Geophysical Research Letters, 2020, 47, e2020GL087910.	4.0	4

#	Article	IF	Citations
37	A Unique Feature of the 2019 Extreme Positive Indian Ocean Dipole Event. Geophysical Research Letters, 2020, 47, e2020GL088615.	4.0	40
38	Two Types of ENSO Varying in Tandem Facilitated by Nonlinear Atmospheric Convection. Geophysical Research Letters, 2020, 47, e2020GL088784.	4.0	16
39	Thermocline Warming Induced Extreme Indian Ocean Dipole in 2019. Geophysical Research Letters, 2020, 47, e2020GL090079.	4.0	78
40	Attenuated Interannual Variability of Austral Winter Antarctic Sea Ice Over Recent Decades. Geophysical Research Letters, 2020, 47, e2020GL090590.	4.0	6
41	Indian Ocean Dipole in CMIP5 and CMIP6: characteristics, biases, and links to ENSO. Scientific Reports, 2020, 10, 11500.	3.3	94
42	Oceanic Processes in Ocean Temperature Products Key to a Realistic Presentation of Positive Indian Ocean Dipole Nonlinearity. Geophysical Research Letters, 2020, 47, e2020GL089396.	4.0	17
43	Butterfly effect and a self-modulating El Niño response to global warming. Nature, 2020, 585, 68-73.	27.8	63
44	Deep-reaching acceleration of global mean ocean circulation over the past two decades. Science Advances, 2020, 6, eaax7727.	10.3	80
45	Climate impacts of the El Niño–Southern Oscillation on South America. Nature Reviews Earth & Environment, 2020, 1, 215-231.	29.7	318
46	Variability of the Subantarctic Mode Water Volume in the South Indian Ocean During 2004–2018. Geophysical Research Letters, 2020, 47, e2020GL087830.	4.0	26
47	Two-year consecutive concurrences of positive Indian Ocean Dipole and Central Pacific El Niño preconditioned the 2019/2020 Australian "black summerâ€-bushfires. Geoscience Letters, 2020, 7, .	3.3	48
48	A 7-Year Lag Precipitation Teleconnection in South Australia and Its Possible Mechanism. Frontiers in Earth Science, 2020, 8, .	1.8	5
49	Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22512-22517.	7.1	221
50	Ocean Climate Observing Requirements in Support of Climate Research and Climate Information. Frontiers in Marine Science, 2019, 6, .	2.5	12
51	Rainfall variations in central Indo-Pacific over the past 2,700 y. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17201-17206.	7.1	73
52	Weakening Atlantic Niño–Pacific connection under greenhouse warming. Science Advances, 2019, 5, eaax4111.	10.3	42
53	Seesaw haze pollution in North China modulated by the sub-seasonal variability of atmospheric circulation. Atmospheric Chemistry and Physics, 2019, 19, 565-576.	4.9	53
54	Atmospheric Convection Dominates Genesis of ENSO Asymmetry. Geophysical Research Letters, 2019, 46, 8387-8396.	4.0	19

#	Article	IF	Citations
55	An Episodic Weakening in the Boreal Spring SST–Precipitation Relationship in the Western Tropical Pacific since the Late 1990s. Journal of Climate, 2019, 32, 3837-3845.	3.2	7
56	Mechanisms causing east Australian spring rainfall differences between three strong El Ni $\tilde{A}\pm 0$ events. Climate Dynamics, 2019, 53, 3641-3659.	3.8	16
57	Pantropical climate interactions. Science, 2019, 363, .	12.6	419
58	Anthropogenic Aerosols Cause Recent Pronounced Weakening of Asian Summer Monsoon Relative to Last Four Centuries. Geophysical Research Letters, 2019, 46, 5469-5479.	4.0	65
59	Response of Southern China Winter Rainfall to El Niño Diversity and Its Relevance to Projected Southern China Rainfall Change. Journal of Climate, 2019, 32, 3343-3356.	3.2	17
60	Intensification of El Niño Rainfall Variability Over the Tropical Pacific in the Slow Oceanic Response to Global Warming. Geophysical Research Letters, 2019, 46, 2253-2260.	4.0	14
61	Unusual Anomaly Pattern of the 2015/2016 Extreme El Ni $ ilde{A}$ ±0 Induced by the 2014 Warm Condition. Geophysical Research Letters, 2019, 46, 14772-14781.	4.0	14
62	Granger causal predictors for maximum rainfall in Australia. Atmospheric Research, 2019, 218, 1-11.	4.1	3
63	Seasonal Dependence of Coupling between Storm Tracks and Sea Surface Temperature in the Southern Hemisphere Midlatitudes: A Statistical Assessment. Journal of Climate, 2018, 31, 4055-4074.	3.2	11
64	Stabilised frequency of extreme positive Indian Ocean Dipole under 1.5 °C warming. Nature Communications, 2018, 9, 1419.	12.8	51
65	Attribution of Anthropogenic Influence on Atmospheric Patterns Conducive to Recent Most Severe Haze Over Eastern China. Geophysical Research Letters, 2018, 45, 2072-2081.	4.0	71
66	ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing. Reviews of Geophysics, 2018, 56, 185-206.	23.0	330
67	Impacts of Broad-Scale Surface Freshening of the Southern Ocean in a Coupled Climate Model. Journal of Climate, 2018, 31, 2613-2632.	3.2	43
68	Lowâ€Frequency Variability and the Unusual Indian Ocean Dipole Events in 2015 and 2016. Geophysical Research Letters, 2018, 45, 1040-1048.	4.0	27
69	Nonlinear Meridional Moisture Advection and the <scp>ENSO</scp> â€Southern China Rainfall Teleconnection. Geophysical Research Letters, 2018, 45, 4353-4360.	4.0	18
70	Potential influence of the Atlantic Multiâ€decadal Oscillation in modulating the biennial relationship between Indian and Australian summer monsoons. International Journal of Climatology, 2018, 38, 5220-5230.	3.5	7
71	Polar amplification dominated by local forcing and feedbacks. Nature Climate Change, 2018, 8, 1076-1081.	18.8	216
72	Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 2018, 564, 201-206.	27.8	394

#	Article	IF	Citations
73	A spurious positive Indian Ocean Dipole in 2017. Science Bulletin, 2018, 63, 1170-1172.	9.0	14
74	Influence of internal climate variability on Indian Ocean Dipole properties. Scientific Reports, 2018, 8, 13500.	3.3	17
75	El Niño–Southern Oscillation complexity. Nature, 2018, 559, 535-545.	27.8	702
76	Future Changes in Extreme El Niño Events Modulated by North Tropical Atlantic Variability. Geophysical Research Letters, 2018, 45, 6646-6653.	4.0	4
77	Assessing the Impact of Model Biases on the Projected Increase in Frequency of Extreme Positive Indian Ocean Dipole Events. Journal of Climate, 2017, 30, 2757-2767.	3.2	30
78	On the Response of the Aleutian Low to Greenhouse Warming. Journal of Climate, 2017, 30, 3907-3925.	3.2	53
79	Weather conditions conducive to Beijing severe haze more frequent under climateÂchange. Nature Climate Change, 2017, 7, 257-262.	18.8	479
80	Definition of Extreme El Niño and Its Impact on Projected Increase in Extreme El Niño Frequency. Geophysical Research Letters, 2017, 44, 11,184.	4.0	26
81	Continued increase of extreme ElÂNiño frequency long after 1.5 °C warming stabilization. Nature Climate Change, 2017, 7, 568-572.	18.8	174
82	A decadal tropical Pacific condition unfavorable to central Pacific El Ni $\tilde{A}\pm$ o. Geophysical Research Letters, 2017, 44, 7919-7926.	4.0	17
83	Realism of modelled Indian summer monsoon correlation with the tropical Indo-Pacific affects projected monsoon changes. Scientific Reports, 2017, 7, 4929.	3.3	18
84	The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Ni $\tilde{A}\pm$ o. Reviews of Geophysics, 2017, 55, 1079-1129.	23.0	337
85	Tropical climate variability: interactions across the Pacific, Indian, and Atlantic Oceans. Climate Dynamics, 2017, 48, 2173-2190.	3.8	56
86	Resolution dependence of the simulated precipitation and diurnal cycle over the Maritime Continent. Climate Dynamics, 2017, 48, 4009-4028.	3.8	24
87	Longâ€term streamflow trends in the middle reaches of the Yellow River Basin: detecting drivers of change. Hydrological Processes, 2016, 30, 1315-1329.	2.6	53
88	Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nature Communications, 2016, 7, 10409.	12.8	77
89	Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection. Scientific Reports, 2016, 6, 20078.	3.3	29
90	Robust contribution of decadal anomalies to the frequency of central-Pacific El Niño. Scientific Reports, 2016, 6, 38540.	3.3	64

#	Article	IF	CITATIONS
91	Presentâ€day zonal wind influences projected Indian Ocean Dipole skewness. Geophysical Research Letters, 2016, 43, 11,392.	4.0	13
92	Global Meteorological Drought: A Synthesis of Current Understanding with a Focus on SST Drivers of Precipitation Deficits. Journal of Climate, 2016, 29, 3989-4019.	3.2	161
93	Synchronicity of Kuroshio Current and climate system variability since the Last Glacial Maximum. Earth and Planetary Science Letters, 2016, 452, 247-257.	4.4	57
94	Tropical Pacific SST Drivers of Recent Antarctic Sea Ice Trends. Journal of Climate, 2016, 29, 8931-8948.	3.2	82
95	Unraveling El Ni $ ilde{A}\pm$ o's impact on the East Asian Monsoon and Yangtze River summer flooding. Geophysical Research Letters, 2016, 43, 11,375.	4.0	125
96	Human-caused Indo-Pacific warm pool expansion. Science Advances, 2016, 2, e1501719.	10.3	85
97	Dynamics of changing impacts of tropical Indo-Pacific variability on Indian and Australian rainfall. Scientific Reports, 2016, 6, 31767.	3.3	18
98	Fourth CLIVAR Workshop on the Evaluation of ENSO Processes in Climate Models: ENSO in a Changing Climate. Bulletin of the American Meteorological Society, 2016, 97, 817-820.	3.3	20
99	A multi-decade record of high-quality <i>f</i> CO ₂ data in version 3 of the Surface Ocean CO ₂ Atlas (SOCAT). Earth System Science Data, 2016. 8. 383-413.	9.9	413
100	Migration of atmospheric convection coupled with ocean currents pushes El Ni $\tilde{A}\pm 0$ to extremes. Geophysical Research Letters, 2015, 42, 3583-3590.	4.0	11
101	Evidence of local sea surface temperatures overriding the southeast Australian rainfall response to the 1997–1998 El Niño. Geophysical Research Letters, 2015, 42, 9449-9456.	4.0	17
102	Introduction to special section on Western Pacific Ocean Circulation and Climate. Journal of Geophysical Research: Oceans, 2015, 120, 3175-3176.	2.6	6
103	Human Contribution to the 2014 Record High Sea Surface Temperatures Over the Western Tropical And Northeast Pacific Ocean. Bulletin of the American Meteorological Society, 2015, 96, S100-S104.	3.3	9
104	Groundwater storage trends in the Loess Plateau of China estimated from streamflow records. Journal of Hydrology, 2015, 530, 281-290.	5.4	62
105	Future extreme sea level seesaws in the tropical Pacific. Science Advances, 2015, 1, e1500560.	10.3	55
106	Increased frequency of extreme LaÂNiña events under greenhouse warming. Nature Climate Change, 2015, 5, 132-137.	18.8	479
107	Pacific western boundary currents and their roles in climate. Nature, 2015, 522, 299-308.	27.8	474
108	Indo-Pacific Climate Interactions in the Absence of an Indonesian Throughflow. Journal of Climate, 2015, 28, 5017-5029.	3.2	20

#	Article	IF	Citations
109	Regional Cooperation on Drought Prediction Science for Disaster Preparedness and Management. Bulletin of the American Meteorological Society, 2015, 96, ES67-ES69.	3.3	3
110	Nonlinear processes reinforce extreme Indian Ocean Dipole events. Scientific Reports, 2015, 5, 11697.	3.3	20
111	The Response of the Indian Ocean Dipole Asymmetry to Anthropogenic Aerosols and Greenhouse Gases. Journal of Climate, 2015, 28, 2564-2583.	3.2	9
112	MEETING SUMMARIES. Bulletin of the American Meteorological Society, 2015, 96, 1969-1972.	3.3	8
113	ENSO and greenhouse warming. Nature Climate Change, 2015, 5, 849-859.	18.8	596
114	Institutional coordination of global ocean observations. Nature Climate Change, 2015, 5, 4-6.	18.8	15
115	Human Contribution to the 2014 Record High Sea Surface Temperatures Over the Western Tropical And Northeast Pacific Ocean. Bulletin of the American Meteorological Society, 2015, 96, S100-S104.	3.3	1
116	An Interhemispheric Tropical Sea Level Seesaw due to El Niño Taimasa. Journal of Climate, 2014, 27, 1070-1081.	3.2	39
117	Nonlinear Feedbacks Associated with the Indian Ocean Dipole and Their Response to Global Warming in the GFDL-ESM2M Coupled Climate Model. Journal of Climate, 2014, 27, 3904-3919.	3.2	14
118	Indo-Pacific–Induced Wave Trains during Austral Autumn and Their Effect on Australian Rainfall. Journal of Climate, 2014, 27, 3208-3221.	3.2	10
119	Atmospheric and Oceanic Conditions Associated with Southern Australian Heat Waves: A CMIP5 Analysis. Journal of Climate, 2014, 27, 7807-7829.	3.2	36
120	ENSO stability in coupled climate models and its association with mean state. Climate Dynamics, 2014, 42, 3313-3321.	3.8	112
121	The importance of the eastward zonal current for generating extreme El Niño. Climate Dynamics, 2014, 42, 3005-3014.	3.8	15
122	Increasing frequency of extreme El Ni $\tilde{A}\pm o$ events due to greenhouse warming. Nature Climate Change, 2014, 4, 111-116.	18.8	1,572
123	Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 2014, 4, 222-227.	18.8	1,115
124	Did Climate Change–Induced Rainfall Trends Contribute to the Australian Millennium Drought?. Journal of Climate, 2014, 27, 3145-3168.	3.2	79
125	Response of El Ni $ ilde{A}$ ±0 sea surface temperature variability to greenhouse warming. Nature Climate Change, 2014, 4, 786-790.	18.8	147
126	Extreme swings of the South Pacific Convergence Zone and the different types of El Niñ0 events. Geophysical Research Letters, 2014, 41, 4695-4703.	4.0	25

#	Article	IF	Citations
127	Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature, 2014, 510, 254-258.	27.8	296
128	Trends in Southern Hemisphere wind-driven circulation in CMIP5 models over the 21st century: Ozone recovery versus greenhouse forcing. Journal of Geophysical Research: Oceans, 2014, 119, 2974-2986.	2.6	25
129	The Southwest Pacific Ocean circulation and climate experiment (SPICE). Journal of Geophysical Research: Oceans, 2014, 119, 7660-7686.	2.6	101
130	Differentiating flavors of the Indian Ocean Dipole using dominant modes in tropical Indian Ocean rainfall. Geophysical Research Letters, 2014, 41, 8978-8986.	4.0	8
131	Meridional variability of atmospheric convection associated with the Indian Ocean Dipole Mode. Scientific Reports, 2014, 4, 3590.	3.3	14
132	The asymmetric influence of the positive and negative IOD events on China's rainfall. Scientific Reports, 2014, 4, 4943.	3.3	76
133	The role of the SST-thermocline relationship in Indian Ocean Dipole skewness and its response to global warming. Scientific Reports, 2014, 4, 6034.	3.3	37
134	More-frequent extreme northward shifts of eastern Indian Ocean tropical convergence under greenhouse warming. Scientific Reports, 2014, 4, 6087.	3.3	18
135	Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature, 2013, 504, 126-130.	27.8	116
136	The Association of Tropical and Extratropical Climate Modes to Atmospheric Blocking across Southeastern Australia. Journal of Climate, 2013, 26, 7555-7569.	3.2	21
137	A New Type of the Indian Ocean Dipole since the Mid-1970s. Journal of Climate, 2013, 26, 959-972.	3.2	122
138	An Observation-Based Assessment of Nonlinear Feedback Processes Associated with the Indian Ocean Dipole. Journal of Climate, 2013, 26, 2880-2890.	3.2	51
139	Southeast Australia Autumn Rainfall Reduction: A Climate-Change-Induced Poleward Shift of Ocean–Atmosphere Circulation. Journal of Climate, 2013, 26, 189-205.	3.2	79
140	Autumn Precipitation Trends over Southern Hemisphere Midlatitudes as Simulated by CMIP5 Models. Journal of Climate, 2013, 26, 8341-8356.	3.2	37
141	Climate-change impact on the 20th-century relationship between the Southern Annular Mode and global mean temperature. Scientific Reports, 2013, 3, 2039.	3.3	56
142	Projected response of the Indian Ocean Dipole to greenhouse warming. Nature Geoscience, 2013, 6, 999-1007.	12.9	201
143	Changes in South Pacific rainfall bands in a warming climate. Nature Climate Change, 2013, 3, 417-423.	18.8	71
144	Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models?. Geophysical Research Letters, 2013, 40, 1200-1205.	4.0	128

#	Article	IF	Citations
145	The response of the largeâ€scale ocean circulation to 20th century Asian and nonâ€Asian aerosols. Geophysical Research Letters, 2013, 40, 2761-2767.	4.0	20
146	Multidecadal ENSO Amplitude Variability in a 1000-yr Simulation of a Coupled Global Climate Model: Implications for Observed ENSO Variability. Journal of Climate, 2013, 26, 9399-9407.	3.2	25
147	Austral Summer Teleconnections of Indo-Pacific Variability: Their Nonlinearity and Impacts on Australian Climate. Journal of Climate, 2013, 26, 2796-2810.	3.2	25
148	Realism of the Indian Ocean Dipole in CMIP5 Models: The Implications for Climate Projections. Journal of Climate, 2013, 26, 6649-6659.	3.2	63
149	Asymmetry in the IOD and ENSO Teleconnection in a CMIP5 Model Ensemble and Its Relevance to Regional Rainfall. Journal of Climate, 2013, 26, 5139-5149.	3.2	37
150	Second peak in the far eastern Pacific sea surface temperature anomaly following strong El Niño events. Geophysical Research Letters, 2013, 40, 4751-4755.	4.0	4
151	Influence of climate variability on seasonal extremes over Australia. Journal of Geophysical Research D: Atmospheres, 2013, 118, 643-654.	3.3	113
152	Forcing of anthropogenic aerosols on temperature trends of the sub-thermocline southern Indian Ocean. Scientific Reports, 2013, 3, 2245.	3.3	23
153	New Strategies for Evaluating ENSO Processes in Climate Models. Bulletin of the American Meteorological Society, 2012, 93, 235-238.	3.3	35
154	Estimating the Impact of Projected Climate Change on Runoff across the Tropical Savannas and Semiarid Rangelands of Northern Australia. Journal of Hydrometeorology, 2012, 13, 483-503.	1.9	21
155	Impact of Indo-Pacific Feedback Interactions on ENSO Dynamics Diagnosed Using Ensemble Climate Simulations. Journal of Climate, 2012, 25, 7743-7763.	3.2	65
156	An Asymmetry in the IOD and ENSO Teleconnection Pathway and Its Impact on Australian Climate. Journal of Climate, 2012, 25, 6318-6329.	3.2	118
157	More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature, 2012, 488, 365-369.	27.8	160
158	Rainfall reductions over Southern Hemisphere semi-arid regions: the role of subtropical dry zone expansion. Scientific Reports, 2012, 2, 702.	3.3	116
159	Argo profiles variability of barrier layer in the tropical Indian Ocean and its relationship with the Indian Ocean Dipole. Geophysical Research Letters, 2012, 39, .	4.0	42
160	Enhanced warming over the global subtropical western boundary currents. Nature Climate Change, 2012, 2, 161-166.	18.8	564
161	The 2011 southeast Queensland extreme summer rainfall: A confirmation of a negative Pacific Decadal Oscillation phase?. Geophysical Research Letters, 2012, 39, .	4.0	85
162	Severe heat waves in Southern Australia: synoptic climatology and large scale connections. Climate Dynamics, 2012, 38, 209-224.	3.8	157

#	Article	IF	CITATIONS
163	Simulation of the Indian Ocean Dipole: A relevant criterion for selecting models for climate projections. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	26
164	Understanding feedback mechanisms of the Indoâ€Pacific Ocean climate system. Eos, 2011, 92, 260-260.	0.1	0
165	The impact of Asian and non-Asian anthropogenic aerosols on 20th century Asian summer monsoon. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	76
166	Does the Southern Annular Mode contribute to the persistence of the multidecade-long drought over southwest Western Australia?. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	42
167	Current drought and future hydroclimate projections in southeast Australia and implications for water resources management. Stochastic Environmental Research and Risk Assessment, 2011, 25, 601-612.	4.0	103
168	Interactions of ENSO, the IOD, and the SAM in CMIP3 Models. Journal of Climate, 2011, 24, 1688-1704.	3.2	88
169	Teleconnection Pathways of ENSO and the IOD and the Mechanisms for Impacts on Australian Rainfall. Journal of Climate, 2011, 24, 3910-3923.	3.2	351
170	Influence of Global-Scale Variability on the Subtropical Ridge over Southeast Australia. Journal of Climate, 2011, 24, 6035-6053.	3.2	43
171	Are Anthropogenic Aerosols Responsible for the Northwest Australia Summer Rainfall Increase? A CMIP3 Perspective and Implications. Journal of Climate, 2011, 24, 2556-2564.	3.2	16
172	The Role of the Indonesian Throughflow on ENSO Dynamics in a Coupled Climate Model. Journal of Climate, 2011, 24, 585-601.	3.2	34
173	The impact of global warming on the tropical Pacific Ocean and El Ni $ ilde{A}\pm$ o. Nature Geoscience, 2010, 3, 391-397.	12.9	1,029
174	Impacts of precipitation and temperature changes on annual streamflow in the Murray–Darling Basin. Water International, 2010, 35, 313-323.	1.0	32
175	Asymmetry in ENSO Teleconnection with Regional Rainfall, Its Multidecadal Variability, and Impact. Journal of Climate, 2010, 23, 4944-4955.	3.2	136
176	Comment on "On the recent warming in the Murrayâ€Darling Basin: Land surface interactions misunderstood―by Lockart et al Geophysical Research Letters, 2010, 37, .	4.0	8
177	On potential causes for an underâ€estimated global ocean heat content trend in CMIP3 models. Geophysical Research Letters, 2010, 37, .	4.0	5
178	Simulations of Processes Associated with the Fast Warming Rate of the Southern Midlatitude Ocean. Journal of Climate, 2010, 23, 197-206.	3.2	62
179	What is driving the fast warming rate of the Southern Hemisphere midlatitude ocean?., 2010, , .		0
180	Dynamics of Late Spring Rainfall Reduction in Recent Decades over Southeastern China. Journal of Climate, 2009, 22, 2240-2247.	3.2	20

#	Article	IF	CITATIONS
181	Rainfall Teleconnections with Indo-Pacific Variability in the WCRP CMIP3 Models. Journal of Climate, 2009, 22, 5046-5071.	3.2	59
182	Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall. Geophysical Research Letters, 2009, 36, .	4.0	159
183	La Niña Modoki impacts Australia autumn rainfall variability. Geophysical Research Letters, 2009, 36, .	4.0	154
184	How rare are the 2006–2008 positive Indian Ocean Dipole events? An IPCC AR4 climate model perspective. Geophysical Research Letters, 2009, 36, .	4.0	15
185	Positive Indian Ocean Dipole events precondition southeast Australia bushfires. Geophysical Research Letters, 2009, 36, .	4.0	180
186	Climate change contributes to more frequent consecutive positive Indian Ocean Dipole events. Geophysical Research Letters, 2009, 36, .	4.0	56
187	Rising temperature depletes soil moisture and exacerbates severe drought conditions across southeast Australia. Geophysical Research Letters, 2009, 36, .	4.0	89
188	Argo profiles a rare occurrence of three consecutive positive Indian Ocean Dipole events, 2006–2008. Geophysical Research Letters, 2009, 36, .	4.0	47
189	A New Index for Tropical Cyclone Development from Sea Surface Temperature and Evaporation Fields. , 2009, , 101-120.		0
190	An interpretation of Australian rainfall projections. Geophysical Research Letters, 2008, 35, .	4.0	42
191	Evidence of impacts from rising temperature on inflows to the Murrayâ€Darling Basin. Geophysical Research Letters, 2008, 35, .	4.0	185
192	Dynamics of late autumn rainfall reduction over southeastern Australia. Geophysical Research Letters, 2008, 35, .	4.0	108
193	Shoaling of the offâ€equatorial south Indian Ocean thermocline: Is it driven by anthropogenic forcing?. Geophysical Research Letters, 2008, 35, .	4.0	21
194	Variability and Trend of North West Australia Rainfall: Observations and Coupled Climate Modeling. Journal of Climate, 2008, 21, 2938-2959.	3.2	74
195	Trends in Southern Hemisphere Circulation in IPCC AR4 Models over 1950–99: Ozone Depletion versus Greenhouse Forcing. Journal of Climate, 2007, 20, 681-693.	3.2	114
196	Have Australian rainfall and cloudiness increased due to the remote effects of Asian anthropogenic aerosols?. Journal of Geophysical Research, 2007, 112, .	3.3	127
197	Multidecadal variability in the transmission of ENSO signals to the Indian Ocean. Geophysical Research Letters, 2007, 34, .	4.0	33
198	Anthropogenic aerosol forcing and the structure of temperature trends in the southern Indian Ocean. Geophysical Research Letters, 2007, 34, .	4.0	28

#	Article	IF	Citations
199	Atlantic meridional overturning circulation and the Southern Hemisphere supergyre. Geophysical Research Letters, 2007, 34, .	4.0	123
200	Impacts of increasing anthropogenic aerosols on the atmospheric circulation trends of the Southern Hemisphere: An airâ€sea positive feedback. Geophysical Research Letters, 2007, 34, .	4.0	19
201	Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation. Geophysical Research Letters, 2006, 33, .	4.0	173
202	SAM and regional rainfall in IPCC AR4 models: Can anthropogenic forcing account for southwest Western Australian winter rainfall reduction?. Geophysical Research Letters, 2006, 33, .	4.0	104
203	Pan-oceanic response to increasing anthropogenic aerosols: Impacts on the Southern Hemisphere oceanic circulation. Geophysical Research Letters, 2006, 33, .	4.0	42
204	Indian Ocean Dipolelike Variability in the CSIRO Mark 3 Coupled Climate Model. Journal of Climate, 2005, 18, 1449-1468.	3.2	72
205	Statistical Modeling of Extreme Rainfall in Southwest Western Australia. Journal of Climate, 2005, 18, 852-863.	3.2	127
206	Transmission of ENSO signal to the Indian Ocean. Geophysical Research Letters, 2005, 32, .	4.0	77
207	Multidecadal fluctuations of winter rainfall over southwest Western Australia simulated in the CSIRO Mark 3 coupled model. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	44
208	The response of the Southern Annular Mode, the East Australian Current, and the southern mid-latitude ocean circulation to global warming. Geophysical Research Letters, 2005, 32, .	4.0	234
209	Multidecadal fluctuations in the relationship between equatorial Pacific heat content anomalies and ENSO amplitude. Geophysical Research Letters, 2004, 31, .	4.0	15
210	The Response of the Antarctic Oscillation to Increasing and Stabilized Atmospheric CO2. Journal of Climate, 2003, 16, 1525-1538.	3.2	139
211	Strong ENSO Variability and a Super-ENSO Pair in the CSIRO Mark 3 Coupled Climate Model. Monthly Weather Review, 2003, 131, 1189-1210.	1.4	19
212	Modes of Interannual Variability of the Southern Hemisphere Circulation Simulated by the CSIRO Climate Model. Journal of Climate, 2002, 15, 1159-1174.	3.2	72
213	Forcing of the Antarctic Circumpolar Wave by El Niño-Southern Oscillation teleconnections. Journal of Geophysical Research, 2001, 106, 9019-9038.	3.3	56
214	A Time-Varying Greenhouse Warming Pattern and the Tropical–Extratropical Circulation Linkage in the Pacific Ocean. Journal of Climate, 2001, 14, 3337-3355.	3.2	25
215	Fluctuations of the relationship between ENSO and northeast Australian rainfall. Climate Dynamics, 2001, 17, 421-432.	3.8	58
216	Modes of SST variability and the fluctuation of global mean temperature. Climate Dynamics, 2001, 17, 889-901.	3.8	24

#	Article	IF	Citations
217	Analysis of an Interactive Instability Mechanism for the Antarctic Circumpolar Wave. Journal of Climate, 2000, 13, 1831-1844.	3.2	31
218	Evidence for a time-varying pattern of Greenhouse warming in the Pacific Ocean. Geophysical Research Letters, 2000, 27, 2577-2580.	4.0	48
219	Southern Mid- to High-Latitude Variability, a Zonal Wavenumber-3 Pattern, and the Antarctic Circumpolar Wave in the CSIRO Coupled Model. Journal of Climate, 1999, 12, 3087-3104.	3.2	56
220	Southern High-Latitude Ocean Climate Drift in a Coupled Model. Journal of Climate, 1999, 12, 132-146.	3.2	19
221	Transient responses of the CSIRO climate model to two different rates of CO 2 increase. Climate Dynamics, 1998, 14, 503-516.	3.8	10
222	P-Vector inverse method evaluated using the modular ocean model (MOM). Journal of Oceanography, 1998, 54, 185-198.	1.7	15
223	A thermal oscillation under a restorative forcing. Quarterly Journal of the Royal Meteorological Society, 1998, 124, 793-809.	2.7	2
224	Zonal extent of oceans, high-latitude fresh water supplies and the thermohaline circulation. Quarterly Journal of the Royal Meteorological Society, 1998, 124, 811-828.	2.7	5
225	A thermal oscillation under a restorative forcing. Quarterly Journal of the Royal Meteorological Society, 1998, 124, 793-809.	2.7	0
226	Oceanic responses to gradual transitions of equator-to-pole temperature-gradients. Quarterly Journal of the Royal Meteorological Society, 1998, 124, 2817-2828.	2.7	0
227	Response of a Global Coupled Ocean–Atmosphere–Sea Ice Climate Model to an Imposed North Atlantic High-Latitude Freshening. Journal of Climate, 1997, 10, 929-948.	3.2	11
228	Effects of convection instability due to incompatibility between ocean dynamics and surface forcings. Annales Geophysicae, 1997, 15, 1067-1075.	1.6	0
229	Surface thermohaline forcing conditions and the response of the present-day global ocean climate to global warming. Journal of Geophysical Research, 1996, 101, 1079-1093.	3.3	3
230	Interactions between thermohaline- and wind-driven circulations and their relevance to the dynamics of the Antarctic Circumpolar Current, in a coarse-resolution global ocean general circulation model. Journal of Geophysical Research, 1996, 101, 14073-14093.	3.3	41
231	The Stability of NADMF under Mixed Boundary Conditions with an Improved Diagnosed Freshwater Flux. Journal of Physical Oceanography, 1996, 26, 1081-1087.	1.7	9
232	Ocean Climate Drift and Interdecadal Oscillation Due to a Change in Thermal Damping. Journal of Climate, 1996, 9, 2821-2833.	3.2	14
233	The generation of thermal oscillations in an ocean model. Quarterly Journal of the Royal Meteorological Society, 1996, 122, 1721-1738.	2.7	2
234	The generation of thermal oscillations in an ocean model. Quarterly Journal of the Royal Meteorological Society, 1996, 122, 1721-1738.	2.7	0

#	Article	IF	CITATIONS
235	Compensation for the NADW Outflow in a Global Ocean General Circulation Model. Journal of Physical Oceanography, 1995, 25, 226-241.	1.7	20
236	Interdecadal Variability Driven by Mismatch between Surface Flux Forcing and Oceanic Freshwater/Heat Transport. Journal of Physical Oceanography, 1995, 25, 2643-2666.	1.7	9
237	Interdecadal Variability in an Ocean Model Driven by a Small, Zonal Redistribution of the Surface Buoyancy Flux. Journal of Physical Oceanography, 1995, 25, 1998-2010.	1.7	28
238	The different behaviour of modeled ocean circulation under an atmosphere with different heat capacity. Journal of Oceanography, 1995, 51, 499-517.	1.7	3
239	Global present-day ocean climate and its stability under various surface thermohaline forcing conditions derived from Levitus climatology. Progress in Oceanography, 1995, 36, 219-247.	3.2	1
240	Surface heat flux parameterizations and the variability of thermohaline circulation. Journal of Geophysical Research, 1995, 100, 10679.	3.3	24
241	Circulation driven by observed surface thermohaline fields in a coarse resolution ocean general circulation model. Journal of Geophysical Research, 1994, 99, 10163.	3.3	23
242	Sensitivity of a World Ocean GCM to Changes in Subsurface Mixing Parameterization. Journal of Physical Oceanography, 1994, 24, 1256-1279.	1.7	75
243	An Analytical Shelf-Ocean Coupled Model for the Bonney Coast Upwelling. Estuarine, Coastal and Shelf Science, 1993, 37, 343-369.	2.1	6
244	Effect of a lower layer current on windâ€driven upwelling. Journal of Geophysical Research, 1992, 97, 751-759.	3.3	3
245	Upwelling in the Taiwan Strait in response to wind stress, ocean circulation and topography. Estuarine, Coastal and Shelf Science, 1988, 26, 15-31.	2.1	12
246	Gravity currents and the release of salt from an inverse estuary. Nature, 1987, 327, 695-697.	27.8	84