Shihua Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7272829/publications.pdf

Version: 2024-02-01

			186265	144013
	92	3,593	28	57
	papers	citations	h-index	g-index
Π				
	102	102	102	3925
	102	102	102	3723
	all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Identification of overlapping community structure in complex networks using fuzzy -means clustering. Physica A: Statistical Mechanics and Its Applications, 2007, 374, 483-490.	2.6	445
2	Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Research, 2012, 40, 9379-9391.	14.5	305
3	Quantitative function for community detection. Physical Review E, 2008, 77, 036109.	2.1	295
4	A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics, 2011, 27, i401-i409.	4.1	212
5	Efficient methods for identifying mutated driver pathways in cancer. Bioinformatics, 2012, 28, 2940-2947.	4.1	155
6	Identifying multi-layer gene regulatory modules from multi-dimensional genomic data. Bioinformatics, 2012, 28, 2458-2466.	4.1	123
7	Comparative pan-cancer DNA methylation analysis reveals cancer common and specific patterns. Briefings in Bioinformatics, 2016, 18, bbw063.	6.5	119
8	Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature Communications, 2022, 13, 1739.	12.8	118
9	DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank. Bioinformatics, 2016, 32, i18-i27.	4.1	115
10	Uncovering fuzzy community structure in complex networks. Physical Review E, 2007, 76, 046103.	2.1	111
11	Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics, 2007, 7, 2856-2869.	2.2	110
12	Discovery of co-occurring driver pathways in cancer. BMC Bioinformatics, 2014, 15, 271.	2.6	99
13	Comparison of computational methods for imputing single-cell RNA-sequencing data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 17, 1-1.	3.0	83
14	3D Genome of macaque fetal brain reveals evolutionary innovations during primate corticogenesis. Cell, 2021, 184, 723-740.e21.	28.9	76
15	Integrative analysis for identifying joint modular patterns of gene-expression and drug-response data. Bioinformatics, 2016, 32, 1724-1732.	4.1	75
16	Identification of functional modules in a PPI network by clique percolation clustering. Computational Biology and Chemistry, 2006, 30, 445-451.	2.3	65
17	Model-based understanding of single-cell CRISPR screening. Nature Communications, 2019, 10, 2233.	12.8	61
18	Discovery of cancer common and specific driver gene sets. Nucleic Acids Research, 2017, 45, e86-e86.	14.5	55

#	Article	IF	Citations
19	Clustering complex networks and biological networks by nonnegative matrix factorization with various similarity measures. Neurocomputing, 2008, 72, 134-141.	5.9	54
20	Breast tumor subgroups reveal diverse clinical prognostic power. Scientific Reports, 2015, 4, 4002.	3.3	54
21	The Discovery of Mutated Driver Pathways in Cancer: Models and Algorithms. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 988-998.	3.0	53
22	High-dimensional genomic data bias correction and data integration using MANCIE. Nature Communications, 2016, 7, 11305.	12.8	52
23	Edge-group sparse PCA for network-guided high dimensional data analysis. Bioinformatics, 2018, 34, 3479-3487.	4.1	43
24	Systematic DNA methylation analysis of multiple cell lines reveals common and specific patterns within and across tissues of origin. Human Molecular Genetics, 2015, 24, 4374-4384.	2.9	39
25	Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data. BMC Systems Biology, 2013, 7, S4.	3.0	36
26	Quantitative function and algorithm for community detection in bipartite networks. Information Sciences, 2016, 367-368, 874-889.	6.9	35
27	Determining modular organization of protein interaction networks by maximizing modularity density. BMC Systems Biology, 2010, 4, S10.	3.0	34
28	Tumor characterization and stratification by integrated molecular profiles reveals essential pan-cancer features. BMC Genomics, 2015, 16, 503.	2.8	32
29	An integrative and comparative study of pan-cancer transcriptomes reveals distinct cancer common and specific signatures. Scientific Reports, 2016, 6, 33398.	3.3	31
30	Learning common and specific patterns from data of multiple interrelated biological scenarios with matrix factorization. Nucleic Acids Research, 2019, 47, 6606-6617.	14.5	28
31	Simple tricks of convolutional neural network architectures improve DNA–protein binding prediction. Bioinformatics, 2019, 35, 1837-1843.	4.1	28
32	Discovery of two-level modular organization from matched genomic data via joint matrix tri-factorization. Nucleic Acids Research, 2018, 46, 5967-5976.	14.5	27
33	Network-Regularized Sparse Logistic Regression Models for Clinical Risk Prediction and Biomarker Discovery. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 944-953.	3.0	24
34	Toward a systematic understanding of cancers: a survey of the pan-cancer study. Frontiers in Genetics, 2014, 5, 194.	2.3	22
35	A fast mathematical programming procedure for simultaneous fitting of assembly components into cryoEM density maps. Bioinformatics, 2010, 26, i261-i268.	4.1	21
36	A General Joint Matrix Factorization Framework for Data Integration and Its Systematic Algorithmic Exploration. IEEE Transactions on Fuzzy Systems, 2020, 28, 1971-1983.	9.8	21

#	Article	IF	Citations
37	Imputing single-cell RNA-seq data by considering cell heterogeneity and prior expression of dropouts. Journal of Molecular Cell Biology, 2021, 13, 29-40.	3.3	21
38	Discovery of cell-type specific regulatory elements in the human genome using differential chromatin modification analysis. Nucleic Acids Research, 2013, 41, 9230-9242.	14.5	19
39	Profiling the transcription factor regulatory networks of human cell types. Nucleic Acids Research, 2014, 42, 12380-12387.	14.5	19
40	An Integrative Framework for Combining Sequence and Epigenomic Data to Predict Transcription Factor Binding Sites Using Deep Learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 355-364.	3.0	19
41	Discovering Link Communities in Complex Networks by an Integer Programming Model and a Genetic Algorithm. PLoS ONE, 2013, 8, e83739.	2.5	17
42	Common community structure in time-varying networks. Physical Review E, 2012, 85, 056110.	2.1	15
43	MSTD: an efficient method for detecting multi-scale topological domains from symmetric and asymmetric 3D genomic maps. Nucleic Acids Research, 2019, 47, e65-e65.	14.5	15
44	Prediction of enhancer–promoter interactions using the cross-cell type information and domain adversarial neural network. BMC Bioinformatics, 2020, 21, 507.	2.6	15
45	A hybrid graph-theoretic method for mining overlapping functional modules in large sparse protein interaction networks. International Journal of Data Mining and Bioinformatics, 2009, 3, 68.	0.1	11
46	A Two-Stage Method to Identify Joint Modules From Matched MicroRNA and mRNA Expression Data. IEEE Transactions on Nanobioscience, 2016, 15, 362-370.	3.3	10
47	Circular Trajectory Reconstruction Uncovers Cellâ€Cycle Progression and Regulatory Dynamics from Singleâ€Cell Hiâ€C Maps. Advanced Science, 2019, 6, 1900986.	11.2	10
48	Joint reconstruction of $\langle i \rangle cis \langle i \rangle$ -regulatory interaction networks across multiple tissues using single-cell chromatin accessibility data. Briefings in Bioinformatics, 2021, 22, .	6.5	10
49	TSCCA: A tensor sparse CCA method for detecting microRNA-gene patterns from multiple cancers. PLoS Computational Biology, 2021, 17, e1009044.	3.2	10
50	VP-Detector: A 3D multi-scale dense convolutional neural network for macromolecule localization and classification in cryo-electron tomograms. Computer Methods and Programs in Biomedicine, 2022, 221, 106871.	4.7	10
51	Local community extraction in directed networks. Physica A: Statistical Mechanics and Its Applications, 2016, 452, 258-265.	2.6	9
52	Probe Efficient Feature Representation of Gapped K-mer Frequency Vectors from Sequences Using Deep Neural Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 657-667.	3.0	8
53	Matrix Factorization Methods for Integrative Cancer Genomics. Methods in Molecular Biology, 2014, 1176, 229-242.	0.9	8
54	Disease category-specific annotation of variants using an ensemble learning framework. Briefings in Bioinformatics, 2022, 23, .	6.5	7

#	Article	IF	CITATIONS
55	Network diffusion for scalable embedding of massive single-cell ATAC-seq data. Science Bulletin, 2021, 66, 2271-2276.	9.0	7
56	Large-scale determination and characterization of cell type-specific regulatory elements in the human genome. Journal of Molecular Cell Biology, 2017, 9, 463-476.	3.3	6
57	Sparse Weighted Canonical Correlation Analysis. Chinese Journal of Electronics, 2018, 27, 459-466.	1.5	6
58	Group-sparse SVD Models via L_1 - and L_0 -norm Penalties and Their Applications in Biological Data. IEEE Transactions on Knowledge and Data Engineering, 2019, , 1-1.	5.7	6
59	Distributed Bayesian Matrix Decomposition for Big Data Mining and Clustering. IEEE Transactions on Knowledge and Data Engineering, 2022, 34, 3701-3713.	5.7	6
60	Towards understanding residual and dilated dense neural networks via convolutional sparse coding. National Science Review, 2021, 8, nwaa159.	9.5	6
61	A Querying Method with Feedback Mechanism for Protein Interaction Network. , 2011, , .		5
62	Bayesian Joint Matrix Decomposition for Data Integration with Heterogeneous Noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 1184-1196.	13.9	5
63	Deciphering the Spatial Modular Patterns of Tissues by Integrating Spatial and Single-Cell Transcriptomic Data. Journal of Computational Biology, 0, , .	1.6	5
64	Convergence of algorithms used for principal component analysis. Science in China Series D: Earth Sciences, 1997, 40, 597-604.	0.9	4
65	Robust Bayesian matrix decomposition with mixture of Gaussian noise. Neurocomputing, 2021, 449, 108-116.	5.9	4
66	A Novel Sparse Graph-Regularized Singular Value Decomposition Model and Its Application to Genomic Data Analysis. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 3842-3856.	11.3	4
67	Fuzzy System Methods in Modeling Gene Expression and Analyzing Protein Networks. Studies in Fuzziness and Soft Computing, 2009, , 165-189.	0.8	3
68	An effective sequence-alignment-free superpositioning of pairwise or multiple structures with missing data. Algorithms for Molecular Biology, 2016, 11, 18.	1.2	3
69	Integrative cancer genomics: models, algorithms and analysis. Frontiers of Computer Science, 2017, 11, 392-406.	2.4	3
70	Matrix Integrative Analysis (MIA) of Multiple Genomic Data for Modular Patterns. Frontiers in Genetics, 2018, 9, 194.	2.3	3
71	Detecting community structure: From parsimony to weighted parsimony. Journal of Systems Science and Complexity, 2010, 23, 1024-1036.	2.8	2
72	Integrative Analysis of Transcription Factor Combinatorial Interactions Using a Bayesian Tensor Factorization Approach. Frontiers in Genetics, 2017, 8, 140.	2.3	2

#	Article	IF	Citations
73	A kernel non-negative matrix factorization framework for single cell clustering. Applied Mathematical Modelling, 2021, 90, 875-888.	4.2	2
74	Prediction of transcription factor binding sites with an attention augmented convolutional neural network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, PP, 1-1.	3.0	2
75	Approximate distance correlation for selecting highly interrelated genes across datasets. PLoS Computational Biology, 2021, 17, e1009548.	3.2	2
76	Prediction of the transcription factor binding sites with meta-learning. Methods, 2022, , .	3.8	2
77	Detect taxonomy-specific pathway associations with environmental factors using metagenomic data., 2013, , .		1
78	Identifying Modules in Complex Networks by a Graph-Theoretical Method and Its Application in Protein Interaction Networks. Lecture Notes in Computer Science, 2007, , 1090-1101.	1.3	1
79	A New Approach of Information Discrepancy to Analysis of Questionnaire Data. Communications in Statistics - Theory and Methods, 2003, 32, 435-457.	1.0	0
80	A dynamical method to extract communities induced by low or middle-degree nodes. , 2011, , .		0
81	Identifying mutated core modules in glioblastoma by integrative network analysis. , 2012, , .		0
82	Guest Editorial for Special Section on ISB/TBC 2014. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 1074-1075.	3.0	0
83	Network Analysis, Integration and Methods in Computational Biology: A Brief Survey on Recent Advances. Understanding Complex Systems, 2016, , 459-482.	0.6	0
84	Reveal cell type-specific regulatory elements and their characterized histone code classes via a hidden Markov model. BMC Genomics, 2018, 19, 903.	2.8	0
85	BMTK: a toolkit for determining modules in biological bipartite networks. Quantitative Biology, 2018, 6, 186-192.	0.5	0
86	Omics tools for the needle out of haystack?. Journal of Genetics and Genomics, 2018, 45, 343-344.	3.9	0
87	Computational Methods for Subtyping of Tumors and Their Applications for Deciphering Tumor Heterogeneity. Methods in Molecular Biology, 2019, 1878, 193-207.	0.9	0
88	Integrating Multiple Types of Data to Identify MicroRNA–Gene Co-modules. Methods in Molecular Biology, 2013, 1049, 215-229.	0.9	0
89	Sparse Partial Least Squares Methods for Joint Modular Pattern Discovery. Methods in Molecular Biology, 2020, 2082, 173-186.	0.9	0
90	MSTD for Detecting Topological Domains from 3D Genomic Maps. Methods in Molecular Biology, 2020, 2117, 79-92.	0.9	0

#	Article	IF	CITATIONS
91	Adversarial Information Bottleneck. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 221-230.	11.3	O
92	Learnable Graph-Regularization for Matrix Decomposition. ACM Transactions on Knowledge Discovery From Data, 2023, 17, 1-20.	3.5	0