Yuri E Nesmelov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7272121/publications.pdf

Version: 2024-02-01

840776 642732 30 561 11 23 citations h-index g-index papers 33 33 33 679 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	The Local Environment of Loop Switch 1 Modulates the Rate of ATP-Induced Dissociation of Human Cardiac Actomyosin. International Journal of Molecular Sciences, 2022, 23, 1220.	4.1	О
2	Conformation of S1-S2 Complex of Human Cardiac Myosin Revealed by FRET. Biophysical Journal, 2021, 120, 251a.	0.5	0
3	Electrostatic interaction of loop 1 and backbone of human cardiac myosin regulates the rate of ATP induced actomyosin dissociation. Journal of Muscle Research and Cell Motility, 2021, , 1 .	2.0	1
4	Electrostatic interactions in the SH1-SH2 helix of human cardiac myosin modulate the time of strong actomyosin binding. Journal of Muscle Research and Cell Motility, 2020, 42, 137-147.	2.0	4
5	CaATP prolongs strong actomyosin binding and promotes futile myosin stroke. Journal of Muscle Research and Cell Motility, 2019, 40, 389-398.	2.0	5
6	Electrostatic interactions in the force-generating region of the human cardiac myosin modulate ADP dissociation from actomyosin. Biochemical and Biophysical Research Communications, 2019, 509, 978-982.	2.1	6
7	Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces. Applied Physics Letters, 2019, 114, .	3.3	37
8	Role of Electrostatic Interactions in the Isoform-Specific Rate of ADP Release from Human Cardiac Myosin. Biophysical Journal, 2018, 114, 140a-141a.	0.5	0
9	Structural analysis of variant of Helicobacter pylori MotB in its activated form, engineered as chimera of MotB and leucine zipper. Scientific Reports, 2017, 7, 13435.	3.3	12
10	Metal cation controls phosphate release in the myosin ATPase. Protein Science, 2017, 26, 2181-2186.	7.6	3
11	Quantification of resolution in microspherical nanoscopy with biological objects. , 2017, , .		3
12	Spotlight on microspherical nanoscopy: Experimental quantification of super-resolution. , 2017, , .		3
13	Microsphere nanoscopy for imaging of actin proteins. , 2016, , .		6
14	Macromolecular Crowding Modulates Actomyosin Kinetics. Biophysical Journal, 2016, 111, 178-184.	0.5	12
15	Role of the Coil-Helix Transition within Loop2 in Cardiac Myosin Kinetics Modulation. Biophysical Journal, 2014, 106, 157a.	0.5	0
16	Protein Structural Dynamics Revealed by Site-Directed Spin Labeling and Multifrequency EPR. Methods in Molecular Biology, 2014, 1084, 63-79.	0.9	4
17	Lactose binding to human galectin-7 (p53-induced gene 1) induces long-range effects through the protein resulting in increased dimer stability and evidence for positive cooperativity. Glycobiology, 2013, 23, 508-523.	2.5	42
18	Metal cation controls myosin and actomyosin kinetics. Protein Science, 2013, 22, 1766-1774.	7.6	7

#	Article	IF	CITATION
19	Mn ²⁺ â€"Nucleotide Coordination at the Myosin Active Site As Detected by Pulsed Electron Paramagnetic Resonance. Journal of Physical Chemistry B, 2012, 116, 13655-13662.	2.6	6
20	Early stages of the recovery stroke in myosin II studied by molecular dynamics simulations. Protein Science, 2011, 20, 2013-2022.	7.6	12
21	Structural kinetics of myosin by transient time-resolved FRET. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1891-1896.	7.1	46
22	Protein structural dynamics revealed by site-directed spin labeling and multifrequency EPR. Biophysical Reviews, 2010, 2, 91-99.	3.2	27
23	Structural dynamics of the myosin relay helix by time-resolved EPR and FRET. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21625-21630.	7.1	51
24	Structure and Dynamics of the Force-Generating Domain of Myosin Probed by Multifrequency Electron Paramagnetic Resonance. Biophysical Journal, 2008, 95, 247-256.	0.5	25
25	Muscle and nonmuscle myosins probed by a spin label at equivalent sites in the force-generating domain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13397-13402.	7.1	26
26	Rotational Dynamics of Phospholamban Determined by Multifrequency Electron Paramagnetic Resonance. Biophysical Journal, 2007, 93, 2805-2812.	0.5	42
27	Multibore sample cell increases EPR sensitivity for aqueous samples. Journal of Magnetic Resonance, 2006, 178, 318-324.	2.1	7
28	Site-directed spin labeling reveals a conformational switch in the phosphorylation domain of smooth muscle myosin. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4000-4005.	7.1	42
29	Phospholamban structural dynamics in lipid bilayers probed by a spin label rigidly coupled to the peptide backbone. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14437-14442.	7.1	110
30	Aqueous sample in an EPR cavity: sensitivity considerations. Journal of Magnetic Resonance, 2004, 167, 138-146.	2.1	22