
GonzÃjlez, Ev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7271950/publications.pdf Version: 2024-02-01

CONZÃ:LEZ EV

#	Article	IF	CITATIONS
1	Low-velocity impact damage on dispersed stacking sequence laminates. Part II: Numerical simulations. Composites Science and Technology, 2009, 69, 937-947.	7.8	287
2	Simulation of drop-weight impact and compression after impact tests on composite laminates. Composite Structures, 2012, 94, 3364-3378.	5.8	264
3	Effects of ply clustering in laminated composite plates under low-velocity impact loading. Composites Science and Technology, 2011, 71, 805-817.	7.8	159
4	Low velocity impact and compression after impact simulation of thin ply laminates. Composites Part A: Applied Science and Manufacturing, 2018, 109, 413-427.	7.6	96
5	Damage resistance and damage tolerance of dispersed CFRP laminates: Effect of the mismatch angle between plies. Composite Structures, 2013, 101, 255-264.	5.8	90
6	Damage sequence in thin-ply composite laminates under out-of-plane loading. Composites Part A: Applied Science and Manufacturing, 2016, 87, 66-77.	7.6	80
7	Accurate simulation of delamination under mixed-mode loading using a cohesive model with a mode-dependent penalty stiffness. Composite Structures, 2018, 184, 506-511.	5.8	70
8	A methodology to simulate low velocity impact and compression after impact in large composite stiffened panels. Composite Structures, 2018, 204, 223-238.	5.8	59
9	Cohesive zone length of orthotropic materials undergoing delamination. Engineering Fracture Mechanics, 2016, 159, 174-188.	4.3	58
10	Damage resistance and damage tolerance of dispersed CFRP laminates: Effect of ply clustering. Composite Structures, 2013, 106, 96-103.	5.8	57
11	Effects of interply hybridization on the damage resistance and tolerance of composite laminates. Composite Structures, 2014, 108, 319-331.	5.8	55
12	Simulating drop-weight impact and compression after impact tests on composite laminates using conventional shell finite elements. International Journal of Solids and Structures, 2018, 144-145, 230-247.	2.7	53
13	Damage resistance and damage tolerance of dispersed CFRP laminates: Design and optimization. Composite Structures, 2013, 95, 569-576.	5.8	48
14	Size Effect Law and Critical Distance Theories to Predict the Nominal Strength of Quasibrittle Structures. Applied Mechanics Reviews, 2013, 65, .	10.1	35
15	Characterization of the translaminar fracture Cohesive Law. Composites Part A: Applied Science and Manufacturing, 2016, 91, 501-509.	7.6	35
16	Translaminar fracture toughness of interply hybrid laminates under tensile and compressive loads. Composites Science and Technology, 2017, 143, 1-12.	7.8	35
17	Experimental study into compression after impact strength of laminates with conventional and nonconventional ply orientations. Composites Part B: Engineering, 2017, 126, 133-142.	12.0	34
18	Compact tension specimen for orthotropic materials. Composites Part A: Applied Science and Manufacturing, 2014, 63, 85-93.	7.6	29

GonzÃilez, Ev

1

#	Article	IF	CITATIONS
19	Hygrothermal effects on the translaminar fracture toughness of cross-ply carbon/epoxy laminates: Failure mechanisms. Composites Science and Technology, 2016, 122, 130-139.	7.8	28
20	Nominal strength of quasi-brittle open hole specimens. Composites Science and Technology, 2012, 72, 1203-1208.	7.8	22
21	A continuum constitutive model for the simulation of fabric-reinforced composites. Composite Structures, 2014, 111, 122-129.	5.8	21
22	Scaling effects of composite laminates under out-of-plane loading. Composites Part A: Applied Science and Manufacturing, 2019, 116, 1-12.	7.6	20
23	Unsymmetrical stacking sequences as a novel approach to tailor damage resistance under out-of-plane impact loading. Composites Science and Technology, 2019, 173, 125-135.	7.8	18
24	Damage resistance and damage tolerance of dispersed CFRP laminates: The bending stiffness effect. Composite Structures, 2013, 106, 30-32.	5.8	14
25	Specimen geometry and specimen size dependence of the \$\${mathcal {R}}\$\$ R -curve and the size effect law from a cohesive model point of view. International Journal of Fracture, 2017, 205, 239-254.	2.2	13
26	Net-tension strength of double-lap joints under bearing-bypass loading conditions using the cohesive zone model. Composite Structures, 2015, 119, 443-451.	5.8	10
27	Nominal strength of quasi-brittle open hole specimens under biaxial loading conditions. Composites Science and Technology, 2013, 87, 42-49.	7.8	9
28	A methodology to obtain material design allowables from high-fidelity compression after impact simulations on composite laminates. Composites Part A: Applied Science and Manufacturing, 2020, 139, 106069.	7.6	9
29	Comment to the paper â€~Analysis of Progressive Matrix Cracking in Composite Laminates II. First Ply Failure' by George J Dvorak and Norman Laws. Journal of Composite Materials, 2014, 48, 1139-1141.	2.4	8
30	Net-tension strength of double lap joints taking into account the material cohesive law. Composite Structures, 2014, 112, 207-213.	5.8	8
31	<pre><mml:math altimg="si66.svg" display="inline" id="d1e397" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>R</mml:mi></mml:math> or the <mml:math altimg="si67.svg" display="inline" id="d1e402" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>I</mml:mi></mml:math> curve? A comparison of their consistency and</pre>	7.6	4
32	predictive capability. Composites Part A: Applied Science and Manufacturing, 2022, 156, 106867. Characterization of debonding between two different materials with beam like geometries. Engineering Fracture Mechanics, 2021, 247, 107661.	4.3	2
33	Transition time threshold for Double Cantilever Beam specimens under high loading rates. Engineering Fracture Mechanics, 2021, 249, 107754.	4.3	2

8.8 Analysis of Delamination Damage in Composite Structures Using Cohesive Elements. , 2018, , 136-156.