
Peter E Hamlington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7271516/publications.pdf Version: 2024-02-01

PETER F HAMUNCTON

#	Article	IF	CITATIONS
1	Interactions between turbulence and flames in premixed reacting flows. Physics of Fluids, 2011, 23, .	4.0	164
2	The form and orientation of Langmuir cells for misaligned winds and waves. Journal of Geophysical Research, 2012, 117, .	3.3	105
3	Langmuir–Submesoscale Interactions: Descriptive Analysis of Multiscale Frontal Spindown Simulations. Journal of Physical Oceanography, 2014, 44, 2249-2272.	1.7	105
4	Effects of submesoscale turbulence on ocean tracers. Journal of Geophysical Research: Oceans, 2016, 121, 908-933.	2.6	70
5	Direct assessment of vorticity alignment with local and nonlocal strain rates in turbulent flows. Physics of Fluids, 2008, 20, .	4.0	63
6	Spectral kinetic energy transfer in turbulent premixed reacting flows. Physical Review E, 2016, 93, 053115.	2.1	60
7	Local and nonlocal strain rate fields and vorticity alignment in turbulent flows. Physical Review E, 2008, 77, 026303.	2.1	58
8	The cross-scale physical-space transfer of kinetic energy in turbulent premixed flames. Proceedings of the Combustion Institute, 2017, 36, 1967-1975.	3.9	53
9	Structure and dynamics of highly turbulent premixed combustion. Progress in Energy and Combustion Science, 2021, 85, 100900.	31.2	52
10	Surface waves affect frontogenesis. Journal of Geophysical Research: Oceans, 2016, 121, 3597-3624.	2.6	49
11	Intermittency in premixed turbulent reacting flows. Physics of Fluids, 2012, 24, .	4.0	47
12	Reynolds stress closure for nonequilibrium effects in turbulent flows. Physics of Fluids, 2008, 20, .	4.0	37
13	Lagrangian analysis of high-speed turbulent premixed reacting flows: Thermochemical trajectories in hydrogen–air flames. Combustion and Flame, 2017, 186, 193-207.	5.2	31
14	Effects of climate oscillations on wind resource variability in the United States. Geophysical Research Letters, 2015, 42, 145-152.	4.0	30
15	Spatially localized multi-scale energy transfer in turbulent premixed combustion. Journal of Fluid Mechanics, 2018, 848, 78-116.	3.4	30
16	Detonation initiation by compressible turbulence thermodynamic fluctuations. Combustion and Flame, 2020, 213, 172-183.	5.2	28
17	Mid-infrared dual frequency comb spectroscopy for combustion analysis from 2.8 to 5â€ ⁻ µm. Proceedings of the Combustion Institute, 2021, 38, 1627-1635.	3.9	28
18	Effects of climate oscillations on wildland fire potential in the continental United States. Geophysical Research Letters, 2017, 44, 7002-7010.	4.0	26

Peter E Hamlington

#	Article	IF	CITATIONS
19	Effects of isothermal stratification strength on vorticity dynamics for single-mode compressible Rayleigh-Taylor instability. Physical Review Fluids, 2019, 4, .	2.5	23
20	Scaling and collapse of conditional velocity structure functions in turbulent premixed flames. Proceedings of the Combustion Institute, 2019, 37, 2527-2535.	3.9	20
21	Modeling of Non-Equilibrium Homogeneous Turbulence in Rapidly Compressed Flows. Flow, Turbulence and Combustion, 2014, 93, 93-124.	2.6	19
22	Autonomic closure for turbulence simulations. Physical Review E, 2016, 93, 031301.	2.1	18
23	OH radical measurements in combustion environments using wavelength modulation spectroscopy and dual-frequency comb spectroscopy near 1491Ânm. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	12
24	Frequency response of periodically sheared homogeneous turbulence. Physics of Fluids, 2009, 21, 055107.	4.0	11
25	Lagrangian analysis of enstrophy dynamics in a highly turbulent premixed flame. Physics of Fluids, 2021, 33, .	4.0	11
26	Numerical simulations of buoyancy-driven flows using adaptive mesh refinement: structure and dynamics of a large-scale helium plume. Theoretical and Computational Fluid Dynamics, 2021, 35, 61-91.	2.2	10
27	Parameter estimation for complex thermal-fluid flows using approximate Bayesian computation. Physical Review Fluids, 2018, 3, .	2.5	10
28	Effects of Langmuir Turbulence on Upper Ocean Carbonate Chemistry. Journal of Advances in Modeling Earth Systems, 2018, 10, 3030-3048.	3.8	9
29	Particle pair dispersion and eddy diffusivity in a high-speed premixed flame. Proceedings of the Combustion Institute, 2021, 38, 2845-2852.	3.9	9
30	Scaling of the puffing Strouhal number for buoyant jets and plumes. Journal of Fluid Mechanics, 2020, 895, .	3.4	8
31	Nonlocal form of the rapid pressure-strain correlation in turbulent flows. Physical Review E, 2009, 80, 046311.	2.1	7
32	Experimental Development and Computational Optimization of Flat Heat Pipes for CubeSat Applications. Journal of Electronic Packaging, Transactions of the ASME, 2017, 139, .	1.8	7
33	Evaluation of Wavelet-Based Optical Flow Velocimetry from OH Scalar Fields in Reacting Turbulent Flows. , 2019, , .		6
34	Analysis of turbulent bending moments in tidal current boundary layers. Journal of Renewable and Sustainable Energy, 2015, 7, 063118.	2.0	5
35	Parameter Estimation for Reynolds-Averaged Navier–Stokes Models Using Approximate Bayesian Computation. AIAA Journal, 2021, 59, 4703-4718.	2.6	4
36	Efficient Simulations of Propagating Flames and Fire Suppression Optimization Using Adaptive Mesh Refinement. Fluids, 2021, 6, 323.	1.7	4

PETER E HAMLINGTON

#	Article	lF	CITATIONS
37	Parameter Estimation for a Turbulent Buoyant Jet using Approximate Bayesian Computation. , 2017, , .		3
38	Assessing diffusion model impacts on enstrophy and flame structure in turbulent lean premixed flames. Combustion Theory and Modelling, 2022, 26, 712-727.	1.9	3
39	Parameter Estimation for a Turbulent Buoyant Jet with Rotating Cylinder Using Approximate Bayesian Computation. , 2017, , .		2
40	Characterization of the Buoyant Jet above a Catalytic Combustor Using Wavelength Modulation Spectroscopy. Combustion Science and Technology, 2020, 192, 997-1014.	2.3	2
41	Flow parameter estimation using laser absorption spectroscopy and approximate Bayesian computation. Experiments in Fluids, 2021, 62, 1.	2.4	2
42	Development and Application of a Thin Flat Heat Pipe Design Optimization Tool for Small Satellite Systems. Journal of Electronic Packaging, Transactions of the ASME, 2021, 143, .	1.8	2
43	Optimization for Internal Turbulent Compressible Flows Using Adjoints. , 2017, , .		1
44	Autonomic Closure for Turbulent Flows Using Approximate Bayesian Computation. , 2018, , .		1
45	Turbulence Model Development Using Markov Chain Monte Carlo Approximate Bayesian Computation. , 2019, , .		1
46	BFM17 v1.0: a reduced biogeochemical flux model for upper-ocean biophysical simulations. Geoscientific Model Development, 2021, 14, 2419-2442.	3.6	1
47	Near- and Far-Field Properties of High-Temperature Turbulent Buoyant Jets. , 2017, , .		Ο
48	Compressible Turbulence Effects on Premixed Autoignition. , 2017, , .		0
49	Development and Application of a Thin Flat Heat Pipe Design Optimization Tool for Small Satellite Systems. , 2019, , .		Ο
50	Novel Lagrangian-Particle Tracking Method for Highly Compressible, Turbulent, Reacting Flows. , 2019, , .		0
51	Lagrangian Chemical Explosive Mode Analysis of Highly Turbulent Premixed Flames. , 2019, , .		Ο
52	Benchmark Direct Numerical Simulations with Lagrangian Tracers for Evaluating Combustion Diagnostics Algorithms. , 2019, , .		0
53	A scaling law for the required transition zone depth in hybrid LES-DNS. Journal of Turbulence, 2020, 21, 722-734.	1.4	0
54	Validation of Computationally Efficient Simulations of Douglas Fir Pyrolysis and Combustion Using Time-Resolved Frequency Comb Laser Measurements. Frontiers in Forests and Global Change, 2022, 5, .	2.3	0