Mary T Fletcher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7271227/publications.pdf

Version: 2024-02-01

361022
35
g-index
1526
1320
citing authors

#	Article	IF	CITATIONS
1	Unique physicochemical properties and rare reducing sugar trehalulose mandate new international regulation for stingless bee honey. Food Chemistry, 2022, 373, 131566.	8.2	27
2	How is Trehalulose Formed by Australian Stingless Bees? - An Intermolecular Displacement of Nectar Sucrose. Journal of Agricultural and Food Chemistry, 2022, 70, 6530-6539.	5.2	3
3	Indospicine combined with arginine deprivation triggers cancer cell death via caspaseâ€dependent apoptosis. Cell Biology International, 2021, 45, 518-527.	3.0	2
4	The Validity of Protein in Australian Honey as an Internal Standard for C4 Sugar Adulteration. Food Analytical Methods, 2021, 14, 823-833.	2.6	7
5	The Influence of Weather on the Occurrence of Aflatoxin B1 in Harvested Maize from Kenya and Tanzania. Foods, 2021, 10, 216.	4.3	9
6	The Inactivation by Curcumin-Mediated Photosensitization of Botrytis cinerea Spores Isolated from Strawberry Fruits. Toxins, 2021, 13, 196.	3.4	10
7	Degradation of the Indospicine Toxin from Indigofera spicata by a Mixed Population of Rumen Bacteria. Toxins, 2021, 13, 389.	3.4	1
8	Extraction and determination of the Pimelea toxin simplexin in complex plant-polymer biocomposites using ultrahigh-performance liquid chromatography coupled with quadrupole Orbitrap mass spectrometry. Analytical and Bioanalytical Chemistry, 2021, 413, 5121-5133.	3.7	4
9	Occurrence of environmental contaminants (pesticides, herbicides, PAHs) in Australian/Queensland <i>Apis mellifera</i> honey. Food Additives and Contaminants: Part B Surveillance, 2021, 14, 193-205.	2.8	13
10	Determination of Ellagic Acid, Punicalagin, and Castalagin from Terminalia ferdinandiana (Kakadu) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
11	Impact of polyphenol-rich extracts of Terminalia ferdinandiana fruits and seeds on viability of human intestinal and liver cells in vitro. Food Chemistry Molecular Sciences, 2021, 2, 100024.	2.1	4
12	Feeding Sugars to Stingless Bees: Identifying the Origin of Trehalulose-Rich Honey Composition. Journal of Agricultural and Food Chemistry, 2021, 69, 10292-10300.	5.2	15
13	In vitro Bioaccessibility and Intestinal Absorption of Selected Bioactive Compounds in Terminalia ferdinandiana. Frontiers in Nutrition, 2021, 8, 818195.	3.7	8
14	A New Method for the Authentication of Australian Honey. Proceedings (mdpi), 2020, 36, .	0.2	0
15	Antimicrobial Activity and Ellagitannins from Terminalia Ferdinandiana. Proceedings (mdpi), 2020, 36, .	0.2	1
16	Biopolymer Composites for Slow Release to Manage Pimelea Poisoning in Cattle. Proceedings (mdpi), 2020, 36, .	0.2	0
17	Analysis of Environmental Contaminants in Australian Honey and Comparison to Stingless Bee Honey from Queensland and Malaysia. Proceedings (mdpi), 2020, 36, .	0.2	0
18	Modelling the Controlled Release of Toxins in a Rumen Environment. Proceedings (mdpi), 2020, 36, .	0.2	0

#	Article	IF	CITATIONS
19	Adsorbents for the Sequestration of the Pimelea Toxin, Simplexin. Proceedings (mdpi), 2020, 36, .	0.2	0
20	Blood Phosphorus Concentration as an Indicator of Phosphorus Deficiency in Growing Cattle. Proceedings (mdpi), 2020, 36, .	0.2	0
21	Stingless bee honey, a novel source of trehalulose: a biologically active disaccharide with health benefits. Scientific Reports, 2020, 10, 12128.	3.3	58
22	A review on Pimelea poisoning of livestock. Toxicon, 2020, 186, 46-57.	1.6	7
23	Toxin Degradation by Rumen Microorganisms: A Review. Toxins, 2020, 12, 664.	3.4	37
24	Mineral and Trace Element Analysis of Australian/Queensland Apis mellifera Honey. International Journal of Environmental Research and Public Health, 2020, 17, 6304.	2.6	19
25	Interactions Between Phytochemicals and Minerals in Terminalia ferdinandiana and Implications for Mineral Bioavailability. Frontiers in Nutrition, 2020, 7, 598219.	3.7	13
26	Emerging food safety risk of hepatotoxic indospicine in feral Australian camel meat. Food Control, 2020, 113, 107205.	5.5	4
27	Food Safety and Natural Toxins. Toxins, 2020, 12, 236.	3.4	12
28	Antioxidant Rich Extracts of Terminalia ferdinandiana Inhibit the Growth of Foodborne Bacteria. Foods, 2019, 8, 281.	4.3	38
29	Antioxidant-Rich Extracts of Terminalia ferdinandiana Interfere with Estimation of Cell Viability. Antioxidants, 2019, 8, 191.	5.1	21
30	Pyrrolizidine Alkaloids of Blue Heliotrope (<i>Heliotropium amplexicaule</i>) and Their Presence in Australian Honey. Journal of Agricultural and Food Chemistry, 2019, 67, 7995-8006.	5.2	19
31	Bioaccumulation and Distribution of Indospicine and Its Foregut Metabolites in Camels Fed Indigofera spicata. Toxins, 2019, 11, 169.	3.4	4
32	Assessing the risk of residues of the toxin indospicine in bovine muscle and liver from north-west Australia. Toxicon, 2019, 163, 48-58.	1.6	4
33	Phosphorus Nutrition in Ruminants Grazing Tropical Rangelands. Proceedings (mdpi), 2019, 36, 200.	0.2	0
34	Analysis of Pyrrolizidine Alkaloids in Queensland Honey: Using Low Temperature Chromatography to Resolve Stereoisomers and Identify Botanical Sources by UHPLC-MS/MS. Toxins, 2019, 11, 726.	3.4	23
35	Curcumin-based photosensitization inactivates Aspergillus flavus and reduces aflatoxin B1 in maize kernels. Food Microbiology, 2019, 82, 82-88.	4.2	38
36	Learned behaviours lead to bone ingestion by phosphorus-deficient cattle. Animal Production Science, 2019, 59, 921.	1.3	7

3

#	Article	IF	CITATIONS
37	Indospicine cytotoxicity and transport in human cell lines. Food Chemistry, 2018, 267, 119-123.	8.2	6
38	NIRS Calibration of Aflatoxin in Maize. Australian Journal of Chemistry, 2018, 71, 868.	0.9	6
39	Release of Indospicine from Contaminated Camel Meat following Cooking and Simulated Gastrointestinal Digestion: Implications for Human Consumption. Toxins, 2018, 10, 356.	3.4	5
40	Chemical and Nutritional Composition of Terminalia ferdinandiana (Kakadu Plum) Kernels: A Novel Nutrition Source. Foods, 2018, 7, 60.	4.3	25
41	Metabolites Identified during Varied Doses of Aspergillus Species in Zea mays Grains, and Their Correlation with Aflatoxin Levels. Toxins, 2018, 10, 187.	3.4	11
42	Accumulation and depletion of indospicine in calves (Bos taurus) fed creeping indigo (Indigofera) Tj ETQq0 0 0 r	gBŢ <u>./</u> Overl	ock 10 Tf 50
43	Addressing Food Insecurity in Papua New Guinea Through Food Safety and Sago Cropping. , 2018, , 123-137.		1
44	In Vitro Biodegradation of Hepatotoxic Indospicine in <i>Indigofera spicata</i> and Its Degradation Derivatives by Camel Foregut and Cattle Rumen Fluids. Journal of Agricultural and Food Chemistry, 2017, 65, 7528-7534.	5.2	9
45	Near Infrared Spectrometry for Rapid Non-Invasive Modelling of Aspergillus-Contaminated Maturing Kernels of Maize (Zea mays L.). Agriculture (Switzerland), 2017, 7, 77.	3.1	12
46	Utilising mobilisation of body reserves to improve the management of phosphorus nutrition of breeder cows. Animal Production Science, 2017, 57, 2280.	1.3	16
47	New candidate markers of phosphorus status in beef breeder cows. Animal Production Science, 2017, 57, 2291.	1.3	23
48	Banana peel: an effective biosorbent for aflatoxins. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 849-860.	2.3	30
49	Level of natural hepatotoxin (Indospicine) contamination in Australian camel meat. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 1587-1595.	2.3	6
50	Accumulation, Persistence, and Effects of Indospicine Residues in Camels Fed <i>Indigofera</i> Plant. Journal of Agricultural and Food Chemistry, 2016, 64, 6622-6629.	5.2	12
51	Seasonal and Species Variation of the Hepatotoxin Indospicine in Australian <i>Indigofera</i> Legumes As Measured by UPLC-MS/MS. Journal of Agricultural and Food Chemistry, 2016, 64, 6613-6621.	5.2	12
52	Tools for Defusing a Major Global Food and Feed Safety Risk: Nonbiological Postharvest Procedures To Decontaminate Mycotoxins in Foods and Feeds. Journal of Agricultural and Food Chemistry, 2016, 64, 8959-8972.	5.2	42
53	Thermo-alkaline Treatment as a Practical Degradation Strategy To Reduce Indospicine Contamination in Camel Meat. Journal of Agricultural and Food Chemistry, 2016, 64, 8447-8453.	5.2	9
54	<i>In vitro</i> experimental environments lacking or containing soil disparately affect competition experiments of <i>Aspergillus flavus</i> end co-occurring fungi in maize grains. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 1241-1253.	2.3	5

#	Article	IF	CITATIONS
55	Synthesis of <scp>l</scp> -indospicine, [5,5,6- ² H ₃]- <scp>l</scp> -indospicine and <scp>l</scp> -norindospicine. Organic and Biomolecular Chemistry, 2016, 14, 6826-6832.	2.8	14
56	Inactivation of Aspergillus flavus spores by curcumin-mediated photosensitization. Food Control, 2016, 59, 708-713.	5.5	58
57	The Occurrence and Toxicity of Indospicine to Grazing Animals. Agriculture (Switzerland), 2015, 5, 427-440.	3.1	24
58	Effect of Increasing Low-Dose Simplexin Exposure in Cattle Consuming <i>Pimelea trichostachya</i> Journal of Agricultural and Food Chemistry, 2014, 62, 7402-7406.	5.2	11
59	Determination of Hepatotoxic Indospicine in Australian Camel Meat by Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2014, 62, 1974-1979.	5.2	13
60	Suspected Pyrrolizidine Alkaloid Hepatotoxicosis in Wild Southern Hairy-Nosed Wombats (<i>Lasiorhinus latifrons</i>). Journal of Agricultural and Food Chemistry, 2014, 62, 7413-7418.	5.2	14
61	<i>Indigofera spicata</i> (creeping indigo) poisoning of three ponies. Australian Veterinary Journal, 2013, 91, 143-149.	1.1	26
62	Residue Potential of Norsesquiterpene Glycosides in Tissues of Cattle Fed Austral Bracken (Pteridium) Tj ETQq0 0	0 ₅ ,gBT /O\	verlock 10 T
63	Norsesquiterpene Glycosides in Bracken Ferns (Pteridium esculentum and Pteridium aquilinum) Tj ETQq1 1 0.7843 Agricultural and Food Chemistry, 2011, 59, 5133-5138.	314 rgBT / 5.2	Overlock <mark>10</mark> 29
64	Crotalaria medicaginea Associated with Horse Deaths in Northern Australia: New Pyrrolizidine Alkaloids. Journal of Agricultural and Food Chemistry, 2011, 59, 11888-11892.	5.2	15
65	Hepatotoxicosis in dogs consuming a diet of camel meat contaminated with indospicine. Australian Veterinary Journal, 2011, 89, 95-100.	1.1	27
66	Risks from plants containing pyrrolizidine alkaloids for livestock and meat quality in Northern Australia, 2011,, 208-214.		7
67	LC/MS/MS analysis of the daphnane orthoester simplexin in poisonous <i>Pimelea</i> species of Australian rangelands, 2011,, 550-556.		4
68	Haemolytic Fungi Isolated from Sago Starch in Papua New Guinea. Mycopathologia, 2010, 169, 107-115.	3.1	4
69	Ptesculentoside, a novel norsesquiterpene glucoside from the Australian bracken fern Pteridium esculentum. Tetrahedron Letters, 2010, 51, 1997-1999.	1.4	24
70	Analysis of Daphnane Orthoesters in Poisonous Australian <i>Pimelea</i> Species by Liquid Chromatographyâ^'Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2010, 58, 7482-7487.	5.2	22
71	Daphnane- and Tigliane-Type Diterpenoid Esters and Orthoesters from <i>Pimelea elongata</i> . Journal of Natural Products, 2010, 73, 1907-1913.	3.0	45
72	Spiroacetal biosynthesis in fruit flies is complex: distinguishable origins of the same major spiroacetal released by different Bactrocera spp Chemical Communications, 2010, 46, 1526.	4.1	8

#	Article	IF	Citations
73	Pyrrolizidine Alkaloids in Crotalaria Taxa from Northern Australia: Risk to Grazing Livestock. Journal of Agricultural and Food Chemistry, 2009, 57, 311-319.	5.2	35
74	Pimelotides A and B, Diterpenoid Ketal-Lactone Orthoesters with an Unprecedented Skeleton from <i>Pimelea elongata</i> . Journal of Natural Products, 2009, 72, 2081-2083.	3.0	19
75	Diverse cuticular hydrocarbons from Australian canebeetles (Coleoptera: Scarabaeidae). Australian Journal of Entomology, 2008, 47, 153-159.	1.1	9
76	A diverse suite of spiroacetals, including a novel branched representative, is released by female Bactrocera tryoni (Queensland fruit fly). Chemical Communications, 2006, , 3975.	4.1	23
77	Spiroacetal Biosynthesis:  (±)-1,7-Dioxaspiro[5.5]undecane inBactroceracacuminataandBactroceraoleae(Olive Fruit Fly). Organic Letters, 2005, 7, 1173-1176.	4.6	9
78	Novel Cuticular Hydrocarbons from the Cane Beetle Antitrogus parvulus4,6,8,10,16-Penta- and 4,6,8,10,16,18-HexamethyldocosanesUnprecedented anti-anti-anti-Stereochemistry in the 4,6,8,10-Methyltetrad. Journal of Organic Chemistry, 2005, 70, 1808-1827.	3.2	37
79	A precision apparatus, with solid phase micro-extraction monitoring capability, for incorporation studies of gaseous precursors into insect-derived metabolites. Arkivoc, 2004, 2004, 109-117.	0.5	7
80	Insect chemistry and chirality. Chirality, 2003, 15, S116-S127.	2.6	10
81	A Suite of Novel Allenes from Australian Melolonthine Scarab Beetles. Structure, Synthesis, and Stereochemistry. Journal of Organic Chemistry, 2003, 68, 3739-3748.	3.2	34
82	4,6,8,10,16-Penta- and 4,6,8,10,16,18-Hexamethyldocosanes from the Cane BeetleAntitrogusparvulus-Cuticular Hydrocarbons with Unprecedented Structure and Stereochemistry. Organic Letters, 2003, 5, 5083-5086.	4.6	31
83	[180]-Oxygen Incorporation Reveals Novel Pathways in Spiroacetal Biosynthesis by Bactrocera cacuminata and B. cucumis. Journal of the American Chemical Society, 2002, 124, 7666-7667.	13.7	16
84	Sex pheromone biosynthesis in the female olive fruit-fly. Double labelling from [1802]-dioxygen into 1,7-dioxaspiro[5.5]undecane. Chemical Communications, 2002, , 1302-1303.	4.1	13
85	Monooxygenase Stereoselectivity in the Biosynthesis of Stereoisomeric Spiroacetals in the Cucumber Fly, Bactrocera cucumis. Organic Letters, 2002, 4, 2775-2778.	4.6	9
86	A novel group of allenic hydrocarbons from five Australian (Melolonthine) beetles. Chemical Communications, 2001, , 885-886.	4.1	10
87	Carbon Hydroxylation of Alkyltetrahydropyranols:  A Paradigm for Spiroacetal Biosynthesis inBactrocerasp Organic Letters, 2001, 3, 397-400.	4.6	19
88	Synthesis and Absolute Stereochemistry of a Constitutionally New Spiroacetal from an Insect. Journal of Organic Chemistry, 2001, 66, 2530-2533.	3.2	14
89	Title is missing!. Journal of Chemical Ecology, 2000, 26, 2275-2290.	1.8	13
90	Synthesis and Stereochemistry of Insect Derived Spiroacetals with Branched Carbon Skeletons. Synthesis, 2000, 2000, 1956-1978.	2.3	24

#	Article	IF	CITATIONS
91	Synthesis and absolute stereochemistry of spiroacetals in rove beetles (Coleoptera: Staphylinidae). Tetrahedron Letters, 1999, 40, 7851-7854.	1.4	14
92	Biogenesis of sex pheromones in the female olive fruit-fly. Chemical Communications, 1998, , 863-864.	4.1	11
93	Absolute configuration of sordidin and 7-episordidin emitted by the banana weevil, Cosmopolites sordidus. Tetrahedron Letters, 1997, 38, 3475-3476.	1.4	16
94	A suite of odd and even carbon-numbered spiroacetals in Bactrocera latifrons. Synthesis and stereochemistry. Tetrahedron Letters, 1997, 38, 3477-3478.	1.4	11
95	(2S,6S,8S)-2,8-Dimethyl-1,7-dioxaspiro[5.5]undecane: A natural spiroacetal lacking anomeric stabilisation. Tetrahedron: Asymmetry, 1995, 6, 967-972.	1.8	12
96	Chemistry of fruit flies. Chemical Reviews, 1995, 95, 789-828.	47.7	136
97	Isoquinoline alkaloids and keto-fatty acids of Argemone ochroleuca and A. mexicana (mexican poppy) seed. I. An assay method and factors affecting their concentration. Australian Journal of Agricultural Research, 1993, 44, 265.	1.5	19
98	Chemistry of fruit-flies. Spiroacetal-rich secretions in several Bactrocera species from the South-West Pacific region. Journal of the Chemical Society Perkin Transactions 1, 1992, , 2827.	0.9	22
99	Absolute stereochemistry of the 1,7-dioxaspiro[5.5] undecanols in fruit-fly species, including the olive-fly. Journal of the Chemical Society Chemical Communications, 1992, , 1457.	2.0	17
100	Chemistry of fruit flies: Glandular secretion of Bactrocera (Polistomimetes) visenda (Hardy). Journal of Chemical Ecology, 1992, 18, 2169-2176.	1.8	7
101	Mercury(II)-mediated routes to some side-chain functionalised 1,7-dioxaspiro[5.5]undecanes. Applications of Luche-Barbier chemoselective addition to ketoaldehydes. Tetrahedron, 1991, 47, 1985-1996.	1.9	6
102	Chemistry of fruit flies: Nature of glandular secretion and volatile emission ofBactrocera (bactrocera) cacuminatus (H�ring). Journal of Chemical Ecology, 1991, 17, 485-495.	1.8	19
103	Chemical studies of rectal gland secretions of some species ofBactrocera dorsalis complex of fruit flies (diptera: Tephritidae). Journal of Chemical Ecology, 1990, 16, 2475-2487.	1.8	57
104	NMR assignments for some 2-substituted 2,6,6-trimethyl-7-oxabicyclo[3.2.1]octanes (dihydropinols). Magnetic Resonance in Chemistry, 1988, 26, 271-272.	1.9	4
105	Volatile compounds from the flowers of Spathiphyllum cannaefolium. Phytochemistry, 1988, 27, 2755-2757.	2.9	43
106	A note on the isoprenoid quinone content of <i>Bordetella avium</i> and related species. Journal of Applied Bacteriology, 1987, 62, 275-277.	1,1	11
107	Spiroacetals in rectal gland secretions of australasian fruit fly species. Journal of the Chemical Society Chemical Communications, 1986, , 853.	2.0	28
108	Spiroacetals from dienones and hydroxyenones by mercury(II) cyclisation. Journal of the Chemical Society Chemical Communications, 1986, , 855.	2.0	27

7

#	Article	IF	CITATIONS
109	Halogenated Terpenoids. XXIV. The Bromocineoles. Australian Journal of Chemistry, 1986, 39, 1723.	0.9	5
110	Halogenated Terpenoids. XXIII. The Dichlorocineoles. Australian Journal of Chemistry, 1986, 39, 1661.	0.9	3
111	The four (4R)-p-menthane-1,2,8-triols. Australian Journal of Chemistry, 1984, 37, 2129.	0.9	13
112	The isomeric 1,3,3-Trimethyl-2-oxabicyclo[2.2.2]octan-6-ol (2-Hydroxy-1,8-cineoles). Australian Journal of Chemistry, 1984, 37, 1117.	0.9	22
113	Halogenated terpenoids. XX. The seven monochlorocineoles. Australian Journal of Chemistry, 1983, 36, 1483.	0.9	21