Isabelle Maridonneau-Parini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7271117/publications.pdf

Version: 2024-02-01

45 papers

3,251 citations

147801 31 h-index 223800 46 g-index

47 all docs

47 docs citations

47 times ranked

3881 citing authors

#	Article	IF	Citations
1	Phagocytosis is coupled to the formation of phagosome-associated podosomes and a transient disruption of podosomes in human macrophages. European Journal of Cell Biology, 2021, 100, 151161.	3.6	8
2	Cellular and molecular actors of myeloid cell fusion: podosomes and tunneling nanotubes call the tune. Cellular and Molecular Life Sciences, 2021, 78, 6087-6104.	5.4	12
3	Genetic engineering of Hoxb8-immortalized hematopoietic progenitors – a potent tool to study macrophage tissue migration. Journal of Cell Science, 2020, 133, .	2.0	8
4	The osteoclast, a target cell for microorganisms. Bone, 2019, 127, 315-323.	2.9	20
5	Tuberculosis Exacerbates HIV-1 Infection through IL-10/STAT3-Dependent Tunneling Nanotube Formation in Macrophages. Cell Reports, 2019, 26, 3586-3599.e7.	6.4	76
6	Probing the mechanical landscape $\hat{a}\in$ " new insights into podosome architecture and mechanics. Journal of Cell Science, 2019, 132, .	2.0	66
7	Bone degradation machinery of osteoclasts: An HIV-1 target that contributes to bone loss. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2556-E2565.	7.1	56
8	Nanoscale Forces during Confined Cell Migration. Nano Letters, 2018, 18, 6326-6333.	9.1	6
9	Podosomes, But Not the Maturation Status, Determine the Protease-Dependent 3D Migration in Human Dendritic Cells. Frontiers in Immunology, 2018, 9, 846.	4.8	37
10	Protrusion Force Microscopy: A Method to Quantify Forces Developed by Cell Protrusions. Journal of Visualized Experiments, 2018, , .	0.3	1
11	Podosome Force Generation Machinery: A Local Balance between Protrusion at the Core and Traction at the Ring. ACS Nano, 2017, 11, 4028-4040.	14.6	72
12	Evaluation of the force and spatial dynamics of macrophage podosomes by multi-particle tracking. Methods, 2016, 94, 75-84.	3.8	15
13	HIV-1 Infection of T Lymphocytes and Macrophages Affects Their Migration via Nef. Frontiers in Immunology, 2015, 6, 514.	4.8	25
14	Molecular and cellular profiles of the resolution phase in a damageâ€associated molecular pattern (DAMP)â€mediated peritonitis model and revelation of leukocyte persistence in peritoneal tissues. FASEB Journal, 2015, 29, 1914-1929.	0.5	21
15	HIV-1 reprograms the migration of macrophages. Blood, 2015, 125, 1611-1622.	1.4	82
16	Working Together: Spatial Synchrony in the Force and Actin Dynamics of Podosome First Neighbors. ACS Nano, 2015, 9, 3800-3813.	14.6	49
17	Tuberculosis is associated with expansion of a motile, permissive and immunomodulatory CD16+ monocyte population via the IL-10/STAT3 axis. Cell Research, 2015, 25, 1333-1351.	12.0	127
18	Tyrosine Phosphorylation of Wiskott-Aldrich Syndrome Protein (WASP) by Hck Regulates Macrophage Function. Journal of Biological Chemistry, 2014, 289, 7897-7906.	3.4	29

#	Article	IF	CITATIONS
19	Control of macrophage 3D migration: a therapeutic challenge to limit tissue infiltration. Immunological Reviews, 2014, 262, 216-231.	6.0	52
20	Podosomes in space. Cell Adhesion and Migration, 2014, 8, 179-191.	2.7	108
21	Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes. Nature Communications, 2014, 5, 5343.	12.8	176
22	Rho/ROCK pathway inhibition by CDK inhibitor p27kip1 participates in the onset of macrophage 3D-mesenchymal migration. Journal of Cell Science, 2014, 127, 4009-23.	2.0	43
23	An efficient siRNAâ€mediated gene silencing in primary human monocytes, dendritic cells and macrophages. Immunology and Cell Biology, 2014, 92, 699-708.	2.3	94
24	Hck contributes to bone homeostasis by controlling the recruitment of osteoclast precursors. FASEB Journal, 2013, 27, 3608-3618.	0.5	28
25	Macrophage Mesenchymal Migration Requires Podosome Stabilization by Filamin A. Journal of Biological Chemistry, 2012, 287, 13051-13062.	3.4	78
26	Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments. European Journal of Cell Biology, 2012, 91, 938-949.	3.6	127
27	Frustrated phagocytosis on micro-patterned immune complexes to characterize lysosome movements in live macrophages. Frontiers in Immunology, 2011, 2, 51.	4.8	39
28	Macrophage podosomes go 3D. European Journal of Cell Biology, 2011, 90, 224-236.	3.6	122
29	Extracellular proteolysis in macrophage migration: Losing grip for a breakthrough. European Journal of Immunology, 2011, 41, 2805-2813.	2.9	80
30	Macrophage polarization: convergence point targeted by Mycobacterium tuberculosis and HIV. Frontiers in Immunology, 2011, 2, 43.	4.8	115
31	The Process of Macrophage Migration Promotes Matrix Metalloproteinase-Independent Invasion by Tumor Cells. Journal of Immunology, 2011, 187, 3806-3814.	0.8	93
32	Three-dimensional migration of macrophages requires Hck for podosome organization and extracellular matrix proteolysis. Blood, 2010, 115, 1444-1452.	1.4	116
33	Dynamics of podosome stiffness revealed by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21016-21021.	7.1	152
34	Matrix Architecture Dictates Three-Dimensional Migration Modes of Human Macrophages: Differential Involvement of Proteases and Podosome-Like Structures. Journal of Immunology, 2010, 184, 1049-1061.	0.8	309
35	Hematopoietic cell kinase (Hck) isoforms and phagocyte duties – From signaling and actin reorganization to migration and phagocytosis. European Journal of Cell Biology, 2008, 87, 527-542.	3.6	61
36	Activation of the Lysosome-Associated p61Hck Isoform Triggers the Biogenesis of Podosomes. Traffic, 2005, 6, 682-694.	2.7	86

#	Article	IF	CITATIONS
37	Complement Receptor 3 (CD11b/CD18) Mediates Type I and Type II Phagocytosis During Nonopsonic and Opsonic Phagocytosis, Respectively. Journal of Immunology, 2002, 169, 2003-2009.	0.8	191
38	p59Hck Isoform Induces F-actin Reorganization to Form Protrusions of the Plasma Membrane in a Cdc42- and Rac-dependent Manner. Journal of Biological Chemistry, 2002, 277, 21007-21016.	3 . 4	48
39	The protein tyrosine kinase Hck is located on lysosomal vesicles that are physically and functionally distinct from CD63-positive lysosomes in human macrophages. Journal of Cell Science, 2002, 115, 81-9.	2.0	40
40	Fusion of Human Neutrophil Phagosomes with Lysosomes in Vitro. Journal of Biological Chemistry, 2001, 276, 35512-35517.	3.4	30
41	NADPH oxidase is functionally assembled in specific granules during activation of human neutrophils. Journal of Leukocyte Biology, 1999, 65, 629-634.	3.3	55
42	The Mannose Receptor Mediates Uptake of Pathogenic and Nonpathogenic Mycobacteria and Bypasses Bactericidal Responses in Human Macrophages. Infection and Immunity, 1999, 67, 469-477.	2.2	221
43	Expression of Azurophil and specific granule proteins during differentiation of NB4 cells in neutrophils. Journal of Cellular Physiology, 1998, 175, 203-210.	4.1	23
44	Hck Is Activated by Opsonized Zymosan and A23187 in Distinct Subcellular Fractions of Human Granulocytes. Journal of Biological Chemistry, 1997, 272, 102-109.	3.4	44
45	Effect of intracellular oxygen-free radicals on the formation of lipid derived mediators in rat renomedullary interstitial cells. Biochemical Pharmacology, 1985, 34, 4137-4143.	4.4	8