Peter K Liaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7269355/publications.pdf

Version: 2024-02-01

289 papers

23,631 citations

72 h-index 145

g-index

297 all docs

297 docs citations

297 times ranked 7916 citing authors

#	Article	IF	Citations
1	Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014, 61, 1-93.	32.8	4,761
2	Science and technology in high-entropy alloys. Science China Materials, 2018, 61, 2-22.	6.3	679
3	Corrosion-Resistant High-Entropy Alloys: A Review. Metals, 2017, 7, 43.	2.3	569
4	Alloy Design and Properties Optimization of High-Entropy Alloys. Jom, 2012, 64, 830-838.	1.9	540
5	Corrosion of Al CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corrosion Science, 2017, 119, 33-45.	6.6	535
6	Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nature Communications, 2015, 6, 5964.	12.8	530
7	Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nature Communications, 2019, 10, 489.	12.8	505
8	Mechanical behavior of high-entropy alloys. Progress in Materials Science, 2021, 118, 100777.	32.8	492
9	High-entropy Alloys with High Saturation Magnetization, Electrical Resistivity and Malleability. Scientific Reports, 2013, 3, 1455.	3.3	436
10	Metallic glass matrix composites. Materials Science and Engineering Reports, 2016, 100, 1-69.	31.8	424
11	High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Materialia, 2017, 123, 285-294.	7.9	378
12	Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Materialia, 2015, 99, 247-258.	7.9	355
13	Microstructures and properties of high-entropy alloy films and coatings: a review. Materials Research Letters, 2018, 6, 199-229.	8.7	345
14	Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Materialia, 2018, 160, 158-172.	7.9	325
15	Gradient cell–structured high-entropy alloy with exceptional strength and ductility. Science, 2021, 374, 984-989.	12.6	316
16	Promising properties and future trend of eutectic high entropy alloys. Scripta Materialia, 2020, 187, 202-209.	5.2	308
17	Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science, 2021, 373, 912-918.	12.6	304
18	Homogenization of Al CoCrFeNi high-entropy alloys with improved corrosion resistance. Corrosion Science, 2018, 133, 120-131.	6.6	283

#	Article	IF	Citations
19	Guidelines in predicting phase formation of high-entropy alloys. MRS Communications, 2014, 4, 57-62.	1.8	275
20	Tailoring magnetic behavior of CoFeMnNiX (XÂ= Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Materialia, 2017, 130, 10-18.	7.9	220
21	Serration and noise behaviors in materials. Progress in Materials Science, 2017, 90, 358-460.	32.8	203
22	Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 647, 229-240.	5 . 6	199
23	Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys. Materials and Design, 2016, 109, 425-433.	7.0	197
24	Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys. Materials Today, 2020, 41, 62-71.	14.2	197
25	A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures. Scripta Materialia, 2021, 204, 114132.	5.2	192
26	Alloying and Processing Effects on the Aqueous Corrosion Behavior of High-Entropy Alloys. Entropy, 2014, 16, 895-911.	2.2	163
27	Design of Light-Weight High-Entropy Alloys. Entropy, 2016, 18, 333.	2.2	162
28	Mechanical, corrosion, and wear properties of biomedical Ti–Zr–Nb–Ta–Mo high entropy alloys. Journal of Alloys and Compounds, 2021, 861, 157997.	5 . 5	152
29	Fracture resistance of high entropy alloys: A review. Intermetallics, 2018, 99, 69-83.	3.9	149
30	A review on the fatigue behavior of Ti-6Al-4V fabricated by electron beam melting additive manufacturing. International Journal of Fatigue, 2019, 119, 173-184.	5.7	149
31	In-situ electrochemical-AFM study of localized corrosion of Al CoCrFeNi high-entropy alloys in chloride solution. Applied Surface Science, 2018, 439, 533-544.	6.1	147
32	Additive Manufacturing of High-Entropy Alloys: A Review. Entropy, 2018, 20, 937.	2.2	142
33	Strong grain-size effect on deformation twinning of an Al _{0.1} CoCrFeNi high-entropy alloy. Materials Research Letters, 2017, 5, 276-283.	8.7	131
34	Phase stability and transformation in a light-weight high-entropy alloy. Acta Materialia, 2018, 146, 280-293.	7.9	131
35	A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties. Scripta Materialia, 2016, 120, 85-89.	5 . 2	130
36	Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys. Jom, 2015, 67, 2288-2295.	1.9	129

#	Article	IF	Citations
37	Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures. Science China Materials, 2019, 62, 853-863.	6.3	129
38	Synthesis and cyclic oxidation behavior of a (Ni, Pt) Al coating on a desulfurized Ni-base superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 2679-2687.	2.2	128
39	Microstructures and Crackling Noise of AlxNbTiMoV High Entropy Alloys. Entropy, 2014, 16, 870-884.	2.2	126
40	Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification. Applied Physics Letters, 2009, 94, 151905.	3. 3	124
41	Tuned Critical Avalanche Scaling in Bulk Metallic Glasses. Scientific Reports, 2014, 4, 4382.	3.3	121
42	Latticeâ€Distortionâ€Enhanced Yield Strength in a Refractory Highâ€Entropy Alloy. Advanced Materials, 2020, 32, e2004029.	21.0	121
43	Phase stability and microstructures of high entropy alloys ion irradiated to high doses. Journal of Nuclear Materials, 2016, 480, 100-108.	2.7	119
44	Effects of Pt incorporation on the isothermal oxidation behavior of chemical vapor deposition aluminide coatings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 1727-1741.	2.2	117
45	High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure. Scientific Reports, 2017, 7, 42742.	3.3	116
46	Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering. Nature Communications, 2021, 12, 4953.	12.8	116
47	Chemical short-range orders and the induced structural transition in high-entropy alloys. Scripta Materialia, 2018, 144, 64-68.	5.2	115
48	First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy alloys with experimental validation. Acta Materialia, 2019, 181, 124-138.	7.9	113
49	Two-glassy-phase bulk metallic glass with remarkable plasticity. Applied Physics Letters, 2007, 91, 131901.	3.3	112
50	High-throughput design of high-performance lightweight high-entropy alloys. Nature Communications, 2021, 12, 4329.	12.8	112
51	The BCC/B2 Morphologies in AlxNiCoFeCr High-Entropy Alloys. Metals, 2017, 7, 57.	2.3	111
52	Predictive multiphase evolution in Al-containing high-entropy alloys. Nature Communications, 2018, 9, 4520.	12.8	107
53	Localized heating and fracture criterion for bulk metallic glasses. Journal of Materials Research, 2006, 21, 915-922.	2.6	106
54	Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes. Scientific Reports, 2015, 5, 16493.	3.3	104

#	Article	IF	Citations
55	Experiments and Model for Serration Statistics in Low-Entropy, Medium-Entropy and High-Entropy Alloys. Scientific Reports, 2015, 5, 16997.	3.3	103
56	Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy. Science Advances, 2020, 6, .	10.3	101
57	Coherent Precipitation and Strengthening in Compositionally Complex Alloys: A Review. Entropy, 2018, 20, 878.	2.2	100
58	Recrystallization Behavior of CoCrCuFeNi High-Entropy Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1481-1487.	2.2	99
59	Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling. Materials Science & Description of the Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 707, 593-601.	5.6	99
60	Nanoprecipitate‧trengthened Highâ€Entropy Alloys. Advanced Science, 2021, 8, e2100870.	11.2	97
61	A Successful Synthesis of the CoCrFeNiAl0.3 Single-Crystal, High-Entropy Alloy by Bridgman Solidification. Jom, 2013, 65, 1751-1758.	1.9	90
62	Friction Stir Processing of a High Entropy Alloy Al0.1CoCrFeNi. Jom, 2015, 67, 1007-1013.	1.9	89
63	Superior Highâ€Temperature Strength in a Supersaturated Refractory Highâ€Entropy Alloy. Advanced Materials, 2021, 33, e2102401.	21.0	89
64	First-principles prediction of high-entropy-alloy stability. Npj Computational Materials, 2017, 3, .	8.7	87
65	Characterization of the temperature evolution during high-cycle fatigue of the ULTIMET superalloy: Experiment and theoretical modeling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 2279-2296.	2.2	86
66	Anomalies in the deformation mechanism and kinetics of coarse-grained high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 654, 256-263.	5.6	83
67	Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy. Journal of Materials Science and Technology, 2021, 61, 119-124.	10.7	82
68	Understanding the Cu-Zn brass alloys using a short-range-order cluster model: significance of specific compositions of industrial alloys. Scientific Reports, 2014, 4, 7065.	3.3	81
69	Effects of sulfur impurity on the scale adhesion behavior of a desulfurized Ni-based superalloy aluminized by chemical vapor deposition. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 833-841.	2.2	80
70	Wear behavior of Al _{0.6} CoCrFeNi high-entropy alloys: Effect of environments. Journal of Materials Research, 2018, 33, 3310-3320.	2.6	80
71	Fundamental electronic structure and multiatomic bonding in 13 biocompatible high-entropy alloys. Npj Computational Materials, 2020, 6, .	8.7	79
72	Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates. Journal of Materials Science and Technology, 2022, 110, 109-116.	10.7	79

#	Article	IF	Citations
73	Thin film metallic glasses: Preparations, properties, and applications. Jom, 2010, 62, 19-24.	1.9	78
74	Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy. Intermetallics, 2020, 124, 106845.	3.9	74
75	Temperature Effects on Deformation and Serration Behavior of High-Entropy Alloys (HEAs). Jom, 2014, 66, 2002-2008.	1.9	72
76	Fatigue behavior of high-entropy alloys: A review. Science China Technological Sciences, 2018, 61, 168-178.	4.0	71
77	Nanoscale serration and creep characteristics of Al0.5CoCrCuFeNi high-entropy alloys. Journal of Alloys and Compounds, 2018, 752, 464-475.	5 . 5	69
78	Enhanced fatigue resistance of a nickel-based hastelloy induced by a surface nanocrystallization and hardening process. Philosophical Magazine Letters, 2005, 85, 427-438.	1.2	68
79	A Review of the Serrated-Flow Phenomenon and Its Role in the Deformation Behavior of High-Entropy Alloys. Metals, 2020, 10, 1101.	2.3	65
80	Electrochemical corrosion behavior of a Zr-based bulk-metallic glass. Applied Physics Letters, 2007, 91,	3.3	64
81	Deformation mechanisms in a precipitation-strengthened ferritic superalloy revealed by in situ neutron diffraction studies at elevated temperatures. Acta Materialia, 2015, 83, 137-148.	7.9	64
82	Strength can be controlled by edge dislocations in refractory high-entropy alloys. Nature Communications, 2021, 12, 5474.	12.8	64
83	Fundamental understanding of mechanical behavior of high-entropy alloys at low temperatures: A review. Journal of Materials Research, 2018, 33, 2998-3010.	2.6	63
84	Microstructural evolution of single Ni2TiAl or hierarchical NiAl/Ni2TiAl precipitates in Fe-Ni-Al-Cr-Ti ferritic alloys during thermal treatment for elevated-temperature applications. Acta Materialia, 2017, 127, 1-16.	7.9	62
85	Mechanical properties of the high-entropy alloy Ag0.5CoCrCuFeNi at temperatures of 4.2–300 K. Low Temperature Physics, 2013, 39, 630-632.	0.6	61
86	Novel high entropy alloys of FexCo1-xNiMnGa with excellent soft magnetic properties. Intermetallics, 2018, 100, 1-8.	3.9	61
87	A 200nm thick glass-forming metallic film for fatigue-property enhancements. Applied Physics Letters, 2006, 88, 131902.	3.3	60
88	A novel ZrNbMoTaW refractory high-entropy alloy with in-situ forming heterogeneous structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 827, 142061.	5.6	59
89	Rate dependence of shear banding and serrated flows in a bulk metallic glass. Journal of Materials Research, 2006, 21, 2164-2167.	2.6	56
90	Enhanced strength-ductility synergy via novel bifunctional nano-precipitates in a high-entropy alloy. International Journal of Plasticity, 2022, 153, 103235.	8.8	56

#	Article	IF	Citations
91	Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5871-5875.	2.2	53
92	Temperature effects on the serrated behavior of an Al0.5CoCrCuFeNi high-entropy alloy. Materials Chemistry and Physics, 2018, 210, 20-28.	4.0	52
93	A Novel Low-Activation VCrFeTaxWx ($x = 0.1, 0.2, 0.3, 0.4, $ and 1) High-Entropy Alloys with Excellent Heat-Softening Resistance. Entropy, 2018, 20, 951.	2.2	52
94	Microstructures and mechanical properties of body-centered-cubic (Al,Ti)0.7(Ni,Co,Fe,Cr)5 high entropy alloys with coherent B2/L21 nanoprecipitation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 737, 286-296.	5.6	52
95	Portevin-Le Chatelier mechanism in face-centered-cubic metallic alloys from low to high entropy. International Journal of Plasticity, 2019, 122, 212-224.	8.8	51
96	Deformation behavior of a Co-Cr-Fe-Ni-Mo medium-entropy alloy at extremely low temperatures. Materials Today, 2021, 50, 55-68.	14.2	51
97	Effects of Constituent Elements and Fabrication Methods on Mechanical Behavior of High-Entropy Alloys: A Review. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1-28.	2.2	50
98	High-Throughput Calculations for High-Entropy Alloys: A Brief Review. Frontiers in Materials, 2020, 7,	2.4	50
99	Structures and mechanical behaviors of Zr55Cu35Al10bulk amorphous alloys at ambient and cryogenic temperatures. Physical Review B, 2006, 74, .	3.2	48
100	Shear strain in a shear band of a bulk-metallic glass in compression. Applied Physics Letters, 2007, 90, 181903.	3.3	48
101	A thermodynamic interpretation of the size-ratio limits for laves phase formation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 1449-1452.	2.2	47
102	Effects of Temperature on Serrated Flows of Al0.5CoCrCuFeNi High-Entropy Alloy. Jom, 2015, 67, 2314-2320.	1.9	47
103	A Brief Review of High Entropy Alloys and Serration Behavior and Flow Units. Journal of Iron and Steel Research International, 2016, 23, 2-6.	2.8	47
104	Chemical-Affinity Disparity and Exclusivity Drive Atomic Segregation, Short-Range Ordering, and Cluster Formation in High-Entropy Alloys. Acta Materialia, 2021, 206, 116638.	7.9	45
105	Simultaneously enhanced strength-ductility of AlCoCrFeNi2.1 eutectic high-entropy alloy via additive manufacturing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 830, 142327.	5.6	45
106	Novel NiAl-strengthened high entropy alloys with balanced tensile strength and ductility. Materials Science & Science & Properties, Microstructure and Processing, 2019, 742, 636-647.	5.6	44
107	Effects of Cu and Zn on microstructures and mechanical behavior of the medium-entropy aluminum alloy. Journal of Alloys and Compounds, 2020, 820, 153092.	5.5	44
108	Machine-learning and high-throughput studies for high-entropy materials. Materials Science and Engineering Reports, 2022, 147, 100645.	31.8	44

#	Article	IF	CITATIONS
109	Infrared temperature mapping of ULTIMET alloy during high-cycle fatigue tests. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 1307-1310.	2.2	42
110	Influence of Strain Rate on Compressive Deformation Behavior of a Zr-Cu-Ni-Al Bulk Metallic Glass at Room Temperature. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 1491-1498.	2.2	42
111	Tensile softening of metallic-glass-matrix composites in the supercooled liquid region. Applied Physics Letters, 2012, 100, .	3.3	42
112	Enhancement of fatigue resistance by overload-induced deformation twinning in a CoCrFeMnNi high-entropy alloy. Acta Materialia, 2020, 201, 412-424.	7.9	41
113	Temperature dependence of serrated flows in compression in a bulk-metallic glass. Applied Physics Letters, 2006, 89, 261909.	3.3	39
114	A Low-Cost Lightweight Entropic Alloy with High Strength. Journal of Materials Engineering and Performance, 2018, 27, 6648-6656.	2.5	38
115	Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy. Scientific Reports, 2015, 5, 16081.	3.3	37
116	The predicted rate-dependent deformation behaviour and multistage strain hardening in a model heterostructured body-centered cubic high entropy alloy. International Journal of Plasticity, 2021, 145, 103073.	8.8	37
117	High-temperature mechanical behavior of Ti-6Al-4V alloy and TiC p /Ti-6Al-4V composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 1569-1578.	2.2	36
118	In Situ Neutron-Diffraction Studies on the Creep Behavior of a Ferritic Superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1497-1508.	2.2	36
119	Mechanical behaviors and precipitation transformation of the lightweight high-Zn-content Al–Zn–Li–Mg–Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140637.	5.6	36
120	Incredible improvement in fatigue resistance of friction stir welded 7075-T651 aluminum alloy via surface mechanical rolling treatment. International Journal of Fatigue, 2019, 124, 15-25.	5.7	35
121	Origin of serrated flow in bulk metallic glasses. Journal of the Mechanics and Physics of Solids, 2019, 124, 634-642.	4.8	33
122	Pressure-induced phase transition in the AlCoCrFeNi high-entropy alloy. Scripta Materialia, 2019, 161, 88-92.	5.2	33
123	Microstructures and Properties of Highâ€Entropy Materials: Modeling, Simulation, and Experiments. Advanced Engineering Materials, 2021, 23, .	3.5	33
124	Novel Ti-Zr-Hf-Nb-Fe refractory high-entropy alloys for potential biomedical applications. Journal of Alloys and Compounds, 2022, 906, 164383.	5.5	33
125	Preternatural Hexagonal High-Entropy Alloys: A Review. Acta Metallurgica Sinica (English Letters), 2020, 33, 1033-1045.	2.9	32
126	Recent Progress with BCC-Structured High-Entropy Alloys. Metals, 2022, 12, 501.	2.3	32

#	Article	IF	Citations
127	Ni-Ti SMA-reinforced Al composites. Jom, 2000, 52, 52-56.	1.9	31
128	Thermal-imaging technologies for detecting damage during high-cycle fatigue. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 15-23.	2.2	31
129	Characteristic length scales governing plasticity/brittleness of bulk metallic glasses at ambient temperature. Applied Physics Letters, 2010, 96, 011905.	3.3	31
130	Fatigue behavior of an Fe48Cr15Mo14Er2C15B6 amorphous steel. Journal of Materials Research, 2007, 22, 544-550.	2.6	30
131	Graded microstructures of Al-Li-Mg-Zn-Cu entropic alloys under supergravity. Science China Materials, 2019, 62, 736-744.	6.3	30
132	Ultrasonic-vibration-enhanced plasticity of an entropic alloy at room temperature. Acta Materialia, 2022, 225, 117569.	7.9	30
133	Dislocation avalanche mechanism in slowly compressed high entropy alloy nanopillars. Communications Physics, 2018, $1, \dots$	5.3	29
134	Microstructure and enhanced mechanical behavior of the Al7Co24Cr21Fe24Ni24 high-entropy alloy system by tuning the Cr content. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 299-306.	5.6	29
135	Peierls barrier characteristic and anomalous strain hardening provoked by dynamic-strain-aging strengthening in a body-centered-cubic high-entropy alloy. Materials Research Letters, 2019, 7, 475-481.	8.7	29
136	Infrared imaging during low-cycle fatigue of HR-120 alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 1287-1292.	2.2	28
137	A multi-phase CrMnFeCoNiAl0.75 high-entropy alloy with high strength at intermediate temperature. Intermetallics, 2020, 120, 106744.	3.9	28
138	A combined drop/suction-casting machine for the manufacture of bulk-metallic-glass materials. Review of Scientific Instruments, 2006, 77, 033902.	1.3	27
139	Stress-life fatigue behavior and fracture-surface morphology of a Cu-based bulk-metallic glass. Journal of Materials Research, 2007, 22, 374-381.	2.6	27
140	High-temperature materials for structural applications: New perspectives on high-entropy alloys, bulk metallic glasses, and nanomaterials. MRS Bulletin, 2019, 44, 847-853.	3.5	27
141	Effects of transient thermal shock on the microstructures and corrosion properties of a reduced activation high-entropy alloy. Journal of Alloys and Compounds, 2022, 918, 165762.	5.5	27
142	Heterogeneous lattice strain strengthening in severely distorted crystalline solids. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	27
143	Temperature evolution and life prediction in fatigue of superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 839-848.	2.2	26
144	Complexity analysis of serrated flows in a bulk metallic glass under constrained and unconstrained conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 771, 138585.	5 . 6	26

#	Article	IF	Citations
145	Mechanical and Magnetic Properties of the High-Entropy Alloys for Combinatorial Approaches. Crystals, 2020, 10, 200.	2.2	26
146	Phase prediction and effect of intrinsic residual strain on phase stability in high-entropy alloys with machine learning. Journal of Alloys and Compounds, 2022, 921, 166149.	5. 5	26
147	Mechanical behavior of a Zr-based bulk metallic glass and its composite at cryogenic temperatures. Journal of Materials Research, 2007, 22, 445-452.	2.6	25
148	High-temperature tensile-hold crack-growth behavior ofÂHASTELLOY® X alloy compared to HAYNES® 188 andÂHAYNES® 230® alloys. Mechanics of Time-Dependent Materials, 2008, 12, 31-44.	4.4	25
149	Quasi-static and dynamic deformation behaviors of in situ Zr-based bulk-metallic-glass-matrix composites. Journal of Materials Research, 2010, 25, 2264-2270.	2.6	25
150	Diffusion Barrier Performance of AlCrTaTiZr/AlCrTaTiZr-N High-Entropy Alloy Films for Cu/Si Connect System. Entropy, 2020, 22, 234.	2.2	25
151	Investigation of phase-transformation path in TiZrHf(VNbTa)x refractory high-entropy alloys and its effect on mechanical property. Journal of Alloys and Compounds, 2021, 886, 161187.	5.5	25
152	Revealing the relationship between microstructures, textures, and mechanical behaviors of cold-rolled Al0.1CoCrFeNi high-entropy alloys. Materials Science & Department of the Materials: Properties, Microstructure and Processing, 2021, 804, 140752.	5.6	24
153	Structure prediction in high-entropy alloys with machine learning. Applied Physics Letters, 2021, 118, .	3.3	24
154	Insights from the Lattice-Strain Evolution on Deformation Mechanisms in Metallic-Glass-Matrix Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2431-2442.	2.2	23
155	Plastic dynamics of the Al0.5CoCrCuFeNi high entropy alloy at cryogenic temperatures: Jerky flow, stair-like fluctuation, scaling behavior, and non-chaotic state. Applied Physics Letters, 2017, 111, .	3.3	23
156	Preparation of Bulk TiZrNbMoV and NbTiAlTaV High-Entropy Alloys by Powder Sintering. Metals, 2021, 11, 1748.	2.3	23
157	On temperature and strain-rate dependence of flow serration in HfNbTaTiZr high-entropy alloy. Scripta Materialia, 2021, 200, 113919.	5.2	22
158	Enhancing strength and ductility via crystalline-amorphous nanoarchitectures in TiZr-based alloys. Science Advances, 2022, 8, eabm2884.	10.3	22
159	Strength softening and stress relaxation of nanostructured materials. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 2641-2649.	2.2	21
160	Corrosion Behavior of Fe41Co7Cr15Mo14C15B6Y2 Bulk Metallic Glass in Sulfuric Acid Solutions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 1524-1533.	2.2	21
161	Size effects on the fatigue behavior of bulk metallic glasses. Journal of Applied Physics, 2011, 110, .	2.5	21
162	Self-Similar Random Process and Chaotic Behavior In Serrated Flow of High Entropy Alloys. Scientific Reports, 2016, 6, 29798.	3.3	21

#	Article	IF	CITATIONS
163	Strain-rate dependence of hardening and softening in compression of a bulk-metallic glass. Journal of Materials Research, 2007, 22, 2655-2658.	2.6	20
164	Microstructures, mechanical behavior and strengthening mechanism of TiSiCN nanocomposite films. Scientific Reports, 2017, 7, 2140.	3.3	20
165	Entropy modeling on serrated flows in carburized steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 753, 135-145.	5.6	20
166	Plastic flow in dynamic compression of a Zr-based bulk metallic glass. Journal of Materials Research, 2006, 21, 1570-1575.	2.6	19
167	Atomic migration and bonding characteristics during a glass transition investigated using as-cast Zr-Cu-Al. Physical Review B, 2011, 83, .	3.2	19
168	Interface Constraints on Shear Band Patterns in Bonded Metallic Glass Films Under Microindentation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2729-2741.	2.2	19
169	Serration Dynamics in a Zr-Based Bulk Metallic Glass. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2404-2414.	2.2	19
170	Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass. Scientific Reports, 2016, 6, 21967.	3.3	19
171	Crystal structures and textures in the hot-forged Ni-Mn-Ga shape memory alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 1397-1403.	2.2	18
172	Neutron diffraction measurements of residual stresses around a crack tip developed under variableâ€amplitude fatigue loadings. Fatigue and Fracture of Engineering Materials and Structures, 2010, 33, 822-831.	3.4	18
173	Tensile deformation mechanisms of an in-situ Ti-based metallic glass matrix composite at cryogenic temperature. Scientific Reports, 2016, 6, 32287.	3.3	18
174	Complexity modeling and analysis of chaos and other fluctuating phenomena. Chaos, Solitons and Fractals, 2018, 116, 166-175.	5.1	18
175	Microstructural evolution and mechanical properties of FeCoCrNiCu high entropy alloys: a microstructure-based constitutive model and a molecular dynamics simulation study. Applied Mathematics and Mechanics (English Edition), 2021, 42, 1109-1122.	3.6	18
176	Fiber-Matrix Interfaces in Ceramic Composites. Materials Research Society Symposia Proceedings, 1996, 458, 147.	0.1	17
177	Effects of Y, GdCu, and Al Addition on the Thermoelectric Behavior of CoCrFeNi High Entropy Alloys. Metals, 2018, 8, 781.	2.3	17
178	Hardening behaviour in the irradiated high entropy alloy. Mechanics of Materials, 2021, 155, 103744.	3.2	17
179	Applications of High-Pressure Technology for High-Entropy Alloys: A Review. Metals, 2019, 9, 867.	2.3	16
180	Charge transfer effect on local lattice distortion in a HfNbTiZr high entropy alloy. Scripta Materialia, 2021, 203, 114104.	5.2	16

#	Article	IF	Citations
181	Microstructures and Properties of the Low-Density Al15Zr40Ti28Nb12M(Cr, Mo, Si)5 High-Entropy Alloys. Metals, 2022, 12, 496.	2.3	16
182	Effects of partial crystallization on compression and fatigue behavior of Zr-based bulk metallic glasses. Journal of Materials Research, 2007, 22, 493-500.	2.6	15
183	Experimental evidence of stress-field-induced selection of variants in Ni-Mn-Ga ferromagnetic shape-memory alloys. Physical Review B, 2007, 75, .	3.2	15
184	Effect of Structural Relaxation on Mechanical Behavior of a Zr-Based Bulk-Metallic Glass. Materials Transactions, 2007, 48, 1781-1784.	1.2	15
185	Tension-Tension-Fatigue Behaviors of a Zr-Based Bulk-Metallic-Glass-Matrix Composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2530-2534.	2.2	15
186	Primary and secondary precipitates in a hierarchical-precipitate-strengthened ferritic alloy. Journal of Alloys and Compounds, 2017, 706, 584-588.	5.5	15
187	Heterogeneous nucleation in a glass-forming alloy. Applied Physics Letters, 2008, 92, .	3.3	14
188	Plastic Deformation in an Amorphous Ni-P Coating. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1610-1620.	2.2	14
189	Influence of thermo-mechanical embrittlement processing on microstructure and mechanical behavior of a pressure vessel steel. Materials and Design, 2016, 89, 759-769.	7.0	14
190	Interplay between microstructure and deformation behavior of a laser-welded CoCrFeNi high entropy alloy. Materials Research Express, 2019, 6, 046514.	1.6	14
191	Effects of Surface Severe Plastic Deformation on the Mechanical Behavior of 304 Stainless Steel. Metals, 2020, 10, 831.	2.3	14
192	Effects of frequency on fatigue behavior of type 316 low-carbon, nitrogen-added stainless steel in air and mercury for the spallation neutron source. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 163-173.	2.2	13
193	Hold-time effects on elevated-temperature low-cycle-fatigue and crack-propagation behaviors of HAYNES® 188 superalloy. Journal of Materials Science, 2009, 44, 2945-2956.	3.7	13
194	Equation of State of an AlCoCrCuFeNi High-Entropy Alloy. Jom, 2015, 67, 2310-2313.	1.9	13
195	Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys. Npj Computational Materials, 2021, 7, .	8.7	13
196	Fatigue induced deformation and thermodynamics evolution in a nano particle strengthened nickel base superalloy. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 675-685.	3.4	12
197	Effect of Heavy Ion Irradiation Dosage on the Hardness of SA508-IV Reactor Pressure Vessel Steel. Metals, 2017, 7, 25.	2.3	12
198	Vanishing of room-temperature slip avalanches in a face-centered-cubic high-entropy alloy by ultrafine grain formation. Scripta Materialia, 2018, 155, 99-103.	5.2	12

#	Article	IF	CITATIONS
199	Effect of Ti substitution for Al on the cuboidal nanoprecipitates in Al _{0.7} NiCoFeCr ₂ high-entropy alloys. Journal of Materials Research, 2018, 33, 3266-3275.	2.6	12
200	Silicon-content-dependent microstructures and mechanical behavior of (AlCrTiZrMo)-Six-N high-entropy alloy nitride films. Materials and Design, 2021, 203, 109553.	7.0	12
201	Temperature-dependent mechanical behavior of an Al0.5Cr0.9FeNi2.5V0.2 high-entropy alloy. Applied Physics Letters, 2021, 119, .	3.3	12
202	Effects of Zr addition on lattice strains and electronic structures of NbTaTiV high-entropy alloy. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142293.	5.6	12
203	Performance-oriented multistage design for multi-principal element alloys with low cost yet high efficiency. Materials Horizons, 2022, 9, 1518-1525.	12.2	12
204	Exploring the amorphous phase formation and properties of W-Ta-(Cr, Fe, Ni) high-entropy alloy gradient films via a high-throughput technique. Journal of Alloys and Compounds, 2022, 913, 165294.	5.5	12
205	Effect of Zr addition on the local structure and mechanical properties of Ti–Ta–Nb–Zr refractory high-entropy alloys. Journal of Materials Research and Technology, 2022, 19, 4428-4438.	5.8	12
206	The low-cycle fatigue and fatigue-crack-growth behavior of HAYNES® HR-120 alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 1451-1460.	2.2	11
207	Shear-Band Deformation in Amorphous Alloys and Composites. Materials Transactions, 2006, 47, 817-821.	1.2	11
208	Tensile behavior and deformation mechanisms of bulk ultrafine-grained copper. Journal of Materials Science, 2006, 41, 6328-6332.	3.7	11
209	Air Oxidation of an Fe ₄₈ C ₁₅ Mo ₁₄ B ₆ Er ₂ Bulk Metallic Glass at 600–725°C. Materials Transactions, 2007, 48, 1864-1869.	1.2	11
210	Microstructural Control of Ti-Al-Nb-W-B Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 2290-2297.	2.2	11
211	Wear behavior of Er-bearing Cu-based amorphous/crystal BMG composite under oil lubrication. Intermetallics, 2011, 19, 1216-1221.	3.9	11
212	Additive Manufacturing of High-Entropy Alloys: Microstructural Metastability and Mechanical Behavior. Journal of Phase Equilibria and Diffusion, 2021, 42, 748-771.	1.4	11
213	Effect of annealing on mechanical and thermoelectric properties of a Al2CoCrFeNi high-entropy alloy. Materials and Design, 2022, 213, 110313.	7.0	11
214	Evolution of residual-strain distribution through an overload-induced retardation period during fatigue-crack growth. Journal of Applied Physics, 2010, 107, 023517.	2.5	10
215	Resolving ensembled microstructural information of bulk-metallic-glass-matrix composites using synchrotron x-ray diffraction. Applied Physics Letters, 2010, 97, 171910.	3.3	10
216	Dynamic tensile mechanisms and constitutive relationship in CrFeNi medium entropy alloys at room and cryogenic temperatures. Physical Review Materials, 2021, 5, .	2.4	10

#	Article	IF	CITATIONS
217	Unveiling microstructural origins of the balanced strength–ductility combination in eutectic high-entropy alloys at cryogenic temperatures. Materials Research Letters, 2022, 10, 602-610.	8.7	10
218	Fiber-Reinforced CMCs: Processing, mechanical behavior, modeling. Jom, 1995, 47, 38-44.	1.9	9
219	An Evaluation of the Use of X-ray Residual Stress Determination as a Means of Characterizing Oxidation Damage of Nickel-Based, Cr2O3-Forming Superalloys Subjected to Various Oxidizing Conditions. Oxidation of Metals, 2010, 74, 305-318.	2.1	9
220	Development of Precipitation-Strengthened AlO.8NbTiVM (M = Co, Ni) Light-Weight Refractory High-Entropy Alloys. Materials, 2021, 14, 2085.	2.9	9
221	Unraveling the discontinuous plastic flow of a Co-Cr-Fe-Ni-Mo multiprincipal-element alloy at deep cryogenic temperatures. Physical Review Materials, 2021, 5, .	2.4	9
222	Cyclic deformation and fatigue behavior of 7075-T651 Al alloy with a gradient structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141669.	5.6	9
223	Mechanical Behavior of High-Entropy Alloys: A Review. , 2021, , 435-522.		9
224	Ti–Zr–Hf–Nb–Ta–Sn high-entropy alloys with good properties as potential biomaterials. Rare Metals, 2022, 41, 2305-2315.	7.1	9
225	Niobium addition improves the corrosion resistance of TiHfZrNbx high-entropy alloys in Hanks' solution. Electrochimica Acta, 2022, 424, 140651.	5.2	9
226	Elastic behavior of binary and ternary refractory multi-principal-element alloys. Materials and Design, 2022, 219, 110820.	7.0	9
227	Fiber Coatings and the Fracture Behavior of a Continuous Fiber Ceramic Composite. Materials Research Society Symposia Proceedings, 1994, 365, 403.	0.1	8
228	Damage mechanisms in a cast ductile iron and a Al2O3p /Al composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 2855-2862.	2.2	8
229	Damage mechanisms and fiber orientation effects on the load-bearing capabilities of a NEXTEL/BLACKGLAS low-cost ceramic composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 911-920.	2.2	8
230	The effect of hydrogen charging on Ln-based amorphous materials. Applied Physics Letters, 2009, 95, 241901.	3.3	8
231	Plasticity performance of Al0.5 CoCrCuFeNi high-entropy alloys under nanoindentation. Journal of Iron and Steel Research International, 2017, 24, 390-396.	2.8	8
232	Effects of Silicon Content on the Microstructures and Mechanical Properties of (AlCrTiZrV)-Six-N High-Entropy Alloy Films. Entropy, 2019, 21, 75.	2.2	8
233	Relation Between the Defect Interactions and the Serration Dynamics in a Zr-Based Bulk Metallic Glass. Applied Sciences (Switzerland), 2020, 10, 3892.	2.5	8
234	Developing high-strength ferritic alloys reinforced by combination of hierarchical and laves precipitates. Journal of Alloys and Compounds, 2021, 856, 158162.	5.5	8

#	Article	IF	CITATIONS
235	High Entropy Materials: Challenges and Prospects. Metals, 2021, 11, 1643.	2.3	8
236	Low-cycle fatigue behavior of ULTIMET® alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 785-796.	2.2	7
237	In situ thermographic observations on the compression behavior of a relaxed Zr-based bulk-metallic glass. Journal of Materials Research, 2007, 22, 368-373.	2.6	7
238	Effects of Cooling Rates on Glass Formation and Magnetic Behavior for the Fe73.0C7.0Si3.3B5.0P8.7Mo3.0 Bulk Metallic Glass. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 2004-2009.	2.2	7
239	Investigation of chaos and memory effects in the Bonhoeffer-van der Pol oscillator with a non-ideal capacitor. Communications in Nonlinear Science and Numerical Simulation, 2019, 73, 195-216.	3.3	7
240	Research on Bulk-metallic Glasses and High-entropy Alloys in Peter K. Liaw's Group and with His Colleagues. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2033-2093.	2.2	7
241	Novel tungsten oxide microneedles with nanosized tips. Applied Physics Letters, 2006, 88, 223107.	3.3	6
242	Structural Transitions and Magnetic Properties of Ni50Mn36.7ln13.3 Particles with Amorphous-Like Phase. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3062-3070.	2.2	6
243	High-Energy Synchrotron X-Ray Diffraction for InÂSitu Study of Phase Transformation in Shape-Memory Alloys. Jom, 2012, 64, 150-160.	1.9	6
244	Non-monotonic changes in critical solidification rates for stability of liquid-solid interfaces with static magnetic fields. Scientific Reports, 2016, 6, 20598.	3.3	6
245	From symmetry to entropy: Crystal entropy difference strongly affects early stage phase transformation. Applied Physics Letters, 2019, 115 , .	3.3	6
246	Deformation mechanisms in hexagonal close-packed high-entropy alloys. Journal of Applied Physics, 2021, 129, .	2.5	6
247	Fatigue dataset of high-entropy alloys. Scientific Data, 2022, 9, .	5.3	6
248	Electrohydraulic fatigue apparatus for testing at cryogenic temperature. Review of Scientific Instruments, 1979, 50, 1590-1594.	1.3	5
249	High-performance composites: Commonalty of phenomena. Jom, 1996, 48, 43-44.	1.9	5
250	Fatigue-induced phase formation and its deformation behavior in a cobalt-based superalloy. Powder Diffraction, 2005, 20, 121-124.	0.2	5
251	The effects of tensile plastic deformation on the hardness and Young's modulus of a bulk nanocrystalline alloy studied by nanoindentation. Journal of Materials Research, 2007, 22, 1235-1239.	2.6	5
252	The Effect of Er Addition on the Air-Oxidation of a Zr55Cu30Al10Ni5-Based Bulk Metallic Glass. Oxidation of Metals, 2014, 81, 453-465.	2.1	5

#	Article	IF	CITATIONS
253	Tensile Mechanical Behaviors of In Situ Metallic Glass Matrix Composites at Ambient Temperature and in Supercooled Liquid Region. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2382-2388.	2.2	5
254	Effect of concentration on the structure of isothermally-annealed CuZr metallic glasses. Materials Science and Technology, 2018, 34, 2287-2293.	1.6	5
255	Competitive relationship during fatigue-crack initiation of friction-stir-welded Al alloy. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 809, 141006.	5.6	5
256	Optimize the Mechanical Properties of AlO.6CoCrFeNi High-Entropy Alloys by Thermo-Mechanical Processing. Metals, 2022, 12, 178.	2.3	5
257	Embrittlement in a bulk nanocrystalline alloy induced by room-temperature aging. Applied Physics Letters, 2006, 89, 061919.	3.3	4
258	Mechanical behaviours of workhardening and worksoftening bulk metallic glasses. Materials Science and Technology, 2012, 28, 249-255.	1.6	4
259	The Effects of Fatigue on the Atomic Structure with Cyclic Loading in Zr50Cu40Al10 and Zr60Cu30Al10 Glasses. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2676-2679.	2.2	4
260	A Focused Review on Engineering Application of Multi-Principal Element Alloy. Frontiers in Materials, 2022, 8, .	2.4	4
261	Effects of grain boundary on irradiation-induced zero-dimensional defects in an irradiated copper. Applied Mathematics and Mechanics (English Edition), 2022, 43, 233-246.	3.6	4
262	A Strategic Design Route to Find a Depleted Uranium High-Entropy Alloy with Great Strength. Metals, 2022, 12, 699.	2.3	4
263	Entropy versus enthalpy in hexagonal-close-packed high-entropy alloys. Rare Metals, 2022, 41, 2906-2920.	7.1	4
264	ANSYS-Based Simulation and Optimization on Temperature Field of Amorphous Ingot Made by Water Quenching. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2371-2375.	2.2	3
265	Slip avalanche in nanoscratching of metallic glasses. Journal of Applied Physics, 2017, 122, 115108.	2.5	3
266	Microstructural Evolution in Chroming Coatings Friction Pairs under Dry Sliding Test Conditions. Advances in Tribology, 2018, 2018, 1-6.	2.1	3
267	Mechanical Behavior and Thermal Stability of (AlCrTiZrMo)N/ZrO2 Nano-Multilayered High-Entropy Alloy Film Prepared by Magnetron Sputtering. Crystals, 2022, 12, 232.	2.2	3
268	Microstructures, Mechanical Behavior, and Radiation Damage of (TiVCr)x-(TaW)1-x Binary System High-Entropy Alloy Films. Metals, 2022, 12, 772.	2.3	3
269	Comparisons of experimental measurements and a theoretical model for specimen self-heating during fatigue of type 316 LN stainless steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 3334-3339.	2.2	2
270	A Simple Model for Examining Composition Effects in Eutectic Nucleation. Materials Transactions, 2007, 48, 1675-1679.	1.2	2

#	Article	IF	CITATIONS
271	Crystallization in Fe- and Co-Based Amorphous Alloys Studied by In-Situ X-Ray Diffraction. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5859-5862.	2.2	2
272	Measurement of Lattice Distortion in NbTaTiV and NbTaTiVZr Using Electron Microscopy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2094-2099.	2.2	2
273	Machine Learning and Data Analytics for Design and Manufacturing of High-Entropy Materials Exhibiting Mechanical or Fatigue Properties of Interest., 2021,, 115-238.		2
274	In-Situ Study of Microstructure Evolution of Spinodal Decomposition in an Al-Rich High-Entropy Alloy. Frontiers in Materials, 2022, 9, .	2.4	2
275	Effects of Glass-Forming Metallic Film on the Fatigue Behavior of C-2000 Ni-Based Alloy. Materials Research Society Symposia Proceedings, 2005, 903, 1.	0.1	1
276	Magnetic Behavior of Pr55Cu13.3Ni6.7Al25 Metallic Glasses. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2395-2398.	2.2	1
277	Probing the Lattice-Distortion Effect on Yield Strengths in High Entropy Alloys. SSRN Electronic Journal, 0, , .	0.4	1
278	Biocompatibility of NbTaTiVZr with Surface Modifications for Osteoblasts. ACS Applied Bio Materials, 2022, 5, 642-649.	4.6	1
279	Intermetallic alloys and their composites: The promise and challenges remain. Jom, 1993, 45, 36-36.	1.9	0
280	Modeling the micromechanical aspects of composites. Jom, 1996, 48, 43-43.	1.9	0
281	Damage mechanisms and fiber orientation effects on the load-bearing capabilities of a NEXTEL/BLACKGLAS low-cost ceramic composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 911-920.	2.2	0
282	Improved Fatigue Properties of 316L Stainless Steel Using Glass-Forming Coatings. Materials Research Society Symposia Proceedings, 2004, 843, 3241.	0.1	0
283	Informatics for Combinatorial Experiments: Accelerating Data Interpretation. Materials Research Society Symposia Proceedings, 2005, 894, 1.	0.1	0
284	Magnetic-field-driven reversal phase transition in highly textured and self-accommodated martensites of Ni–Co–Mn–In composite. Journal of Strain Analysis for Engineering Design, 2011, 46, 607-613.	1.8	0
285	Foreword: Special Topic on "Neutron and X-Ray Diffraction Studies of Advanced Materials IV― Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1410-1412.	2.2	0
286	The Behavior of Hastelloy®C-2000®Alloy Under Strain-Controlled Fatigue Loading. , 2013, , 240-254.		0
287	Dynamic Stress–Strain Behavior in ZrTiCuNiAl Noncrystalline Alloys Pretreated Under High Pressures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2390-2394.	2.2	0
288	Plasticity Enhancement by Fe-Addition on NiAl Alloy: A Synchrotron X-ray Diffraction Mapping and Molecular Dynamics Simulation Study. Quantum Beam Science, 2018, 2, 18.	1.2	0

#	Article	IF	CITATIONS
289	Wear Properties of Sc-Bearing Zr-Based Composite BMG with Nano-CuZr2 under Lubrication. Applied Sciences (Switzerland), 2020, 10, 4909.	2.5	0