Qiaoli Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7268620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. Journal of the American Chemical Society, 2016, 138, 16174-16181.	13.7	852
2	Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials. Science, 2018, 359, 675-679.	12.6	374
3	Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nature Chemistry, 2019, 11, 622-628.	13.6	371
4	Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nature Communications, 2017, 8, 15131.	12.8	364
5	Charge-Redistribution-Enhanced Nanocrystalline Ru@IrOx Electrocatalysts for Oxygen Evolution in Acidic Media. CheM, 2019, 5, 445-459.	11.7	354
6	Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nature Materials, 2017, 16, 532-536.	27.5	306
7	Short-Range Ordered Iridium Single Atoms Integrated into Cobalt Oxide Spinel Structure for Highly Efficient Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2021, 143, 5201-5211.	13.7	287
8	Unique Excavated Rhombic Dodecahedral PtCu ₃ Alloy Nanocrystals Constructed with Ultrathin Nanosheets of High-Energy {110} Facets. Journal of the American Chemical Society, 2014, 136, 3748-3751.	13.7	226
9	Excavated octahedral Pt-Co alloy nanocrystals built with ultrathin nanosheets as superior multifunctional electrocatalysts for energy conversion applications. Nano Energy, 2017, 39, 582-589.	16.0	130
10	Excavated Cubic Platinum–Tin Alloy Nanocrystals Constructed from Ultrathin Nanosheets with Enhanced Electrocatalytic Activity. Angewandte Chemie - International Edition, 2016, 55, 9021-9025.	13.8	111
11	Well-faceted noble-metal nanocrystals with nonconvex polyhedral shapes. Chemical Society Reviews, 2016, 45, 3207-3220.	38.1	111
12	Molecular Scalpel to Chemically Cleave Metal–Organic Frameworks for Induced Phase Transition. Journal of the American Chemical Society, 2021, 143, 6681-6690.	13.7	103
13	Efficient Hot Electron Transfer from Small Au Nanoparticles. Nano Letters, 2020, 20, 4322-4329.	9.1	92
14	Pt Particle Size Affects Both the Charge Separation and Water Reduction Efficiencies of CdS–Pt Nanorod Photocatalysts for Light Driven H ₂ Generation. Journal of the American Chemical Society, 2022, 144, 2705-2715.	13.7	80
15	Wet chemical synthesis of intermetallic Pt ₃ Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances. Nanoscale, 2014, 6, 7019-7024.	5.6	59
16	A facile surfactant-free synthesis of Rh flower-like nanostructures constructed from ultrathin nanosheets and their enhanced catalytic properties. Nano Research, 2016, 9, 849-856.	10.4	56
17	Synthesis and Visualization of Entangled 3D Covalent Organic Frameworks with Highâ€Valency Stereoscopic Molecular Nodes for Gas Separation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	42
18	Novel hydrogen storage properties of palladium nanocrystals activated by a pentagonal cyclic twinned structure. Nano Research, 2015, 8, 2698-2705.	10.4	33

QIAOLI CHEN

#	Article	IF	CITATIONS
19	Composition-tunable synthesis of Pt–Cu octahedral alloy nanocrystals from PtCu to PtCu3via underpotential-deposition-like process and their electro-catalytic properties. RSC Advances, 2015, 5, 18153-18158.	3.6	30
20	Excavated Cubic Platinum–Tin Alloy Nanocrystals Constructed from Ultrathin Nanosheets with Enhanced Electrocatalytic Activity. Angewandte Chemie, 2016, 128, 9167-9171.	2.0	20
21	Solvent-dependent evolution of cyclic penta-twinned rhodium icosahedral nanocrystals and their enhanced catalytic properties. Nano Research, 2018, 11, 656-664.	10.4	19
22	Cu ²⁺ underpotential-deposition assisted synthesis of Au and Au–Pd alloy nanocrystals with systematic shape evolution. CrystEngComm, 2015, 17, 5556-5561.	2.6	16
23	Rational design and synthesis of excavated trioctahedral Au nanocrystals. Nanoscale, 2015, 7, 10728-10734.	5.6	14
24	Nucleation-mediated synthesis and enhanced catalytic properties of Au–Pd bimetallic tripods and bipyramids with twinned structures and high-energy facets. Nanoscale, 2016, 8, 2819-2825.	5.6	14
25	Boosting the Electrocatalytic CO2 Reduction Reaction by Nanostructured Metal Materials via Defects Engineering. Nanomaterials, 2022, 12, 2389.	4.1	9
26	NIR-II Upconversion Photoluminescence of Er3+ Doped LiYF4 and NaY(Gd)F4 Core-Shell Nanoparticles. Frontiers in Chemistry, 2021, 9, 690833.	3.6	8
27	Optimization of gold–palladium core–shell nanowires towards H ₂ O ₂ reduction by adjusting shell thickness. Nanoscale Advances, 2020, 2, 785-791.	4.6	7
28	Tailoring the Chemical Potential of Crystal Growth Units to Tune the Bulk Structure of Nanocrystals. Small Methods, 2021, 5, e2000447.	8.6	6
29	Concave nano-octahedral alloys: wet chemical synthesis of bimetallic Pt–Pd nanocrystals with high-index {hhl} Facets. Dalton Transactions, 2021, 50, 12083-12087.	3.3	6
30	Synthesis and Visualization of Entangled 3D Covalent Organic Frameworks with Highâ€Valency Stereoscopic Molecular Nodes for Gas Separation. Angewandte Chemie, 2022, 134, .	2.0	4
31	Engineering the degree of concavity of one-dimensional Au–Cu alloy nanorods with partial intermetallic compounds by facile wet chemical synthesis. Dalton Transactions, 2022, 51, 7790-7796.	3.3	1