Jeong-Won Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7268128/publications.pdf

Version: 2024-02-01

127 papers	2,352 citations	27 h-index	276875 41 g-index
128	128	128	1432
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Self-assembly of CdTe Nanowires for Solar Cells Under a 550Ânm Wavelength Light. Journal of Electrical Engineering and Technology, 2022, 17, 1481-1486.	2.0	O
2	Molecular Dynamics Study on Graphene-Nanoflake Sensor Sandwiched Between Crossed Graphene-Nanoribbon Junctions. Journal of Nanoscience and Nanotechnology, 2021, 21, 3887-3890.	0.9	0
3	Anomaly Detection of the Brake Operating Unit on Metro Vehicles Using a One-Class LSTM Autoencoder. Applied Sciences (Switzerland), 2021, 11, 9290.	2.5	18
4	Impact of Data Quality in Home Energy Management System on Distribution System State Estimation. IEEE Access, 2018, 6, 11024-11037.	4.2	17
5	False Data Injection Attacks on Contingency Analysis: Attack Strategies and Impact Assessment. IEEE Access, 2018, 6, 8841-8851.	4.2	34
6	Distributed multiâ€area WLS state estimation integrating measurements weight update. IET Generation, Transmission and Distribution, 2017, 11, 2552-2561.	2. 5	11
7	Molecular dynamics simulation study of a carbon-nanotube oscillator in a graphene-nanoribbon trench. Journal of the Korean Physical Society, 2016, 69, 426-434.	0.7	0
8	Experimental Measurement of Phase Equilibrium of Hydrate in Water + Ionic Liquid + CH ₄ System. Journal of Chemical & Data, 2016, 61, 543-548.	1.9	9
9	Thermodynamic inhibition of CO 2 hydrate in the presence of morpholinium and piperidinium ionic liquids. Fluid Phase Equilibria, 2016, 413, 75-79.	2.5	43
10	Phase equilibria of CH 4 and CO 2 hydrates formed from aqueous solutions of glutaric acid and malonic acid. Fluid Phase Equilibria, 2016, 413, 71-74.	2. 5	7
11	Nonlinear Responses of Graphene Nanodisk Pressure Sensor. Journal of Computational and Theoretical Nanoscience, 2015, 12, 425-430.	0.4	1
12	Position-dependent mechanical responses of nanoindented graphene nanoribbons: Molecular dynamics study. Journal of the Korean Physical Society, 2015, 67, 625-633.	0.7	2
13	Nonvolatile graphene nanoflake shuttle memory. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 56, 17-23.	2.7	10
14	Molecular dynamics study of carbon-nanotube shuttle-memory on graphene nanoribbon array. Computational Materials Science, 2014, 93, 164-168.	3.0	5
15	Molecular dynamics study on the C60 oscillator in a graphene nanoribbon trench. Journal of the Korean Physical Society, 2014, 65, 185-189.	0.7	6
16	Engineering the resonance frequency of carbon-nanotube oscillators via a telescoping outertube. Journal of the Korean Physical Society, 2014, 64, 1586-1589.	0.7	0
17	Energy exchange between vibration modes of a graphene nanoflake oscillator: Molecular dynamics study. Current Applied Physics, 2014, 14, 237-244.	2.4	7
18	Molecular dynamics simulation study on cross-type graphene resonator. Computational Materials Science, 2014, 82, 280-285.	3.0	4

#	Article	IF	CITATIONS
19	Developing a nanoelectromechanical shuttle graphene-nanoflake device. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 58, 88-93.	2.7	6
20	Encapsulation Dynamics of a C ₆₀ Buckminsterfullerene Into a Graphene Nanoribbon Trench. Journal of Computational and Theoretical Nanoscience, 2014, 11, 2125-2129.	0.4	2
21	Controlling Resonance Frequencies of Double-Walled Carbon-Nanotube Oscillators with Divided Outertubes. Journal of Nanoscience and Nanotechnology, 2014, 14, 6033-6037.	0.9	4
22	Molecular dynamics modeling and simulation of a graphene-based nanoelectromechanical resonator. Current Applied Physics, 2013, 13, 789-794.	2.4	39
23	One-dimensional self-assembly of C60 molecules on periodically wrinkled graphene sheet: A Monte Carlo approach. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 3136-3143.	2.1	9
24	Unusual synergy effect on methane hydrate inhibition when ionic liquid meets polymer. RSC Advances, 2013, 3, 19920.	3.6	54
25	Developing nanoscale inertial sensor based on graphite-flake with self-retracting motion. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 50, 44-50.	2.7	11
26	Molecular dynamics simulation study on graphene-nanoribbon-resonators tuned by adjusting axial strain. Current Applied Physics, 2013, 13, 360-365.	2.4	23
27	Molecular dynamics simulation study on mechanical responses of nanoindented monolayer-graphene-nanoribbon. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 54, 118-124.	2.7	18
28	Molecular dynamics study on the bending rigidity of graphene nanoribbons. Computational Materials Science, 2013, 74, 107-113.	3.0	37
29	Developing ultrasensitive pressure sensor based on graphene nanoribbon: Molecular dynamics simulation. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 47, 6-11.	2.7	25
30	Molecular dynamics modeling and simulations of graphene-nanoribbon-resonator-based nanobalance as yoctogram resolution detector. Computational Materials Science, 2013, 67, 329-333.	3.0	38
31	Molecular Dynamics Study on Graphene-Based Nanoelectromechanical Relays. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1892-1898.	0.4	7
32	Velocity-Dependent Frequency of Carbon-Nanotube Oscillators with Intertube Gaps. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1868-1873.	0.4	2
33	Molecular Dynamics Simulation on Asymmetric Oscillations of Graphene Nanoribbon. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1874-1878.	0.4	1
34	<i>A Special Issue on</i> Advanced Simulations Techniques and Multiscale Modeling in Nanoscience and Nanotechnology. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1667-1668.	0.4	1
35	Developing Flapping-Wings Based on Graphene Resonator for Nano-Ornithopter: Molecular Dynamics Simulation. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1669-1676.	0.4	3
36	Sensitivity of Graphene-Nanoribbon-Based Accelerometer with Attached Mass. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1886-1891.	0.4	11

#	Article	IF	CITATIONS
37	Molecular Dynamics Study on Nanoscale Graphene-Flake with Self-Retracting Motion. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1677-1683.	0.4	4
38	Vibrational Analysis of Cantilevered Carbon-Nanotube Resonator with Different Linear Density of Attached Mass: Molecular Dynamics Simulations. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1863-1867.	0.4	8
39	Molecular Dynamics Study on Chaotic Motions in Vibrational Behaviors of Bent Single-Layer Graphene Sheet. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1879-1885.	0.4	1
40	Controlled Transformation of CdTe Nanoparticles Into Nanoribbons via Self-Assembling Process. Journal of Nanoscience and Nanotechnology, 2012, 12, 4309-4312.	0.9	1
41	Molecular dynamics study on resonance frequency shifts due to linear density of nanoclusters encapsulated in carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1543-1547.	2.7	10
42	A molecular dynamics study on carbon-nanotube oscillators with intertube gaps. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 2027-2031.	2.7	16
43	Molecular dynamics modeling and simulations to understand gate-tunable graphene-nanoribbon-resonator. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 45, 194-200.	2.7	23
44	A molecular dynamics simulation study on resonance frequencies comparison of tunable carbon-nanotube resonators. Applied Surface Science, 2012, 258, 2014-2016.	6.1	15
45	Molecular dynamics study on vibrational properties of graphene nanoribbon resonator under tensile loading. Computational Materials Science, 2012, 65, 216-220.	3.0	19
46	Developing accelerometer based on graphene nanoribbon resonators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 3248-3255.	2.1	32
47	Conversion of CdTe Nanoparticles into Nanoribbons via Self-Assembly. Korean Chemical Engineering Research, 2012, 50, 1082-1085.	0.2	1
48	Tuning ionic liquids for hydrate inhibition. Chemical Communications, 2011, 47, 6341.	4.1	89
49	Molecular dynamics study on nanotube-resonators with mass migration applicable to both frequency-tuner and data-storage-media. Computational Materials Science, 2011, 50, 1818-1822.	3.0	18
50	Resonance frequency distribution of cantilevered (5,5)(10,10) double-walled carbon nanotube with different intertube lengths. Molecular Simulation, 2011, 37, 18-22.	2.0	2
51	Study on Electromigratively-Telescoping Carbon-Nanotube-Based Reversible-Tuner. Journal of Nanoscience and Nanotechnology, 2011, 11, 6359-6363.	0.9	2
52	Study on tunable resonator using a cantilevered carbon nanotube encapsulating a copper nanocluster. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 909-913.	2.7	19
53	Molecular dynamics study on resonance frequency change due to axial-strain-induced torsions of single-walled carbon nanotubes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 1470-1476.	2.1	10
54	Linear Nanomotor Based on Electromigration of a Nanoparticle Encapsulated in a Carbon Nanotube. Journal of Nanoscience and Nanotechnology, 2011, 11, 1573-1576.	0.9	4

#	Article	IF	CITATIONS
55	Resonant Frequencies of Cantilevered (8,8)(3,3) Double-Walled Carbon Nanotube Resonator with Short Outer Wall. Journal of Nanoscience and Nanotechnology, 2011, 11, 445-448.	0.9	2
56	Molecular Dynamics Study of Nano Mass Transfer in a Vibrating Cantilevered Carbon-Nanotube. Journal of Nanoscience and Nanotechnology, 2011, 11, 5856-5860.	0.9	9
57	Model schematics of carbon-nanotube-based-nanomechanical-tuner using piezoelectric strain. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1995-1999.	2.7	12
58	Molecular dynamics study of effects of intertube gap on frequency-controlled carbon-nanotube oscillators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 3658-3665.	2.1	27
59	Gigahertz frequency tuner based on a telescoping double-walled carbon nanotube: molecular dynamics simulations. Molecular Simulation, 2010, 36, 418-424.	2.0	9
60	Developing a nanotube-based electromechanical-device for measuring angular velocity. Computational Materials Science, 2010, 48, 837-841.	3.0	10
61	A study on resonance frequency of cantilevered triple-walled carbon nanotube with short middle-and outer-walls. Computational Materials Science, 2010, 50, 686-689.	3.0	7
62	Molecular dynamics study on oscillation dynamics of a C60 fullerene encapsulated in a vibrating carbon-nanotube-resonator. Computational Materials Science, 2010, 50, 790-795.	3.0	14
63	Simulation analysis for the ring patterned void defect in silicon mono crystal. , 2010, , .		0
64	Modeling and simulation of frequency-changeable carbon-nanotube oscillators via molecular dynamics simulations. , 2010, , .		0
65	Frequency change by inter-walled length difference of double-wall carbon nanotube resonator. Solid State Communications, 2009, 149, 1574-1577.	1.9	18
66	Kinetic lattice Monte Carlo simulation study on vacancy diffusion in germanium. Current Applied Physics, 2009, 9, e25-e28.	2.4	1
67	The frequency of cantilevered double-wall carbon nanotube resonators as a function of outer wall length. Journal of Physics Condensed Matter, 2009, 21, 385301.	1.8	10
68	Molecular dynamics simulation study on capacitive nano-accelerometers based on telescoping carbon nanotubes. Modelling and Simulation in Materials Science and Engineering, 2009, 17, 025011.	2.0	17
69	Molecular Dynamics Simulations of an Inertia Sensor with Carbon Nanotube Oscillators. Journal of Nanoscience and Nanotechnology, 2009, 9, 6943-7.	0.9	0
70	Nanotube Oscillators: Properties and Applications. Journal of Computational and Theoretical Nanoscience, 2009, 6, 2347-2379.	0.4	26
71	Frequency characteristics of triple-walled carbon nanotube gigahertz devices. Nanotechnology, 2008, 19, 285704.	2.6	16
72	Characterization of nanotube nonvolatile memory device., 2008,,.		0

#	Article	IF	CITATIONS
73	Electrostatically telescoping nanotube nonvolatile memory device. Nanotechnology, 2007, 18, 095705.	2.6	46
74	Electromechanical analysis of suspended carbon nanotubes for memory applications. Nanotechnology, 2006, 17, 2127-2134.	2.6	10
75	A double-walled carbon nanotube oscillator encapsulating a copper nanowire. Nanotechnology, 2006, 17, 5485-5490.	2.6	28
76	Nanotube oscillator based on a short single-walled carbon nanotube bundle. Nanotechnology, 2006, 17, 2250-2258.	2.6	71
77	Long fine single-wall carbon nanotube growth by Nano-spin-threading: model schematics and simulations. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 25, 347-355.	2.7	1
78	Carbon-nanotube-based nanoelectromechanical switch. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 27, 163-175.	2.7	51
79	Model schematics of a nanoelectronic device based on multi-endo-fullerenes electromigration. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 27, 245-252.	2.7	17
80	A study on carbon nanotube bridge as a electromechanical memory device. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 27, 332-340.	2.7	28
81	A study on nanotube–substrate interaction effect for fullerene-shuttle-memory based on nanopeapod. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 28, 50-56.	2.7	8
82	Electromechanical modeling and simulations of nanobridge memory device. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 28, 273-280.	2.7	14
83	An Atomistic Simulation Study of Carbon Nanotube Electromechanical Memory. Journal of Computational and Theoretical Nanoscience, 2005, 2, 348-353.	0.4	3
84	Schematics and simulations of nanomemory device based on nanopeapods. Materials Science and Engineering C, 2005, 25, 843-847.	7.3	14
85	A nanoscale field effect data storage of bipolar endo-fullerenes shuttle device. Current Applied Physics, 2005, 5, 609-614.	2.4	7
86	Carbon nanotube oscillator operated by thermal expansion of encapsulated gases. Nanotechnology, 2005, 16, 2670-2676.	2.6	41
87	Structural Properties of Potassium Encapsulated in Carbon Nanotubes. Key Engineering Materials, 2005, 277-279, 919-928.	0.4	1
88	Carbon nanotube shuttle memory device based on singlewall-to-doublewall carbon nanotube transition. Computational Materials Science, 2005, 33, 338-345.	3.0	7
89	Molecular dynamics simulations of nanomemory element based on boron-nitride nanotube-to-peapod transition. Computational Materials Science, 2005, 33, 317-324.	3.0	11
90	Potassium Structures in Carbon Nanotubes. Journal of the Physical Society of Japan, 2004, 73, 738-744.	1.6	6

#	Article	IF	CITATIONS
91	Gigahertz actuator of multiwall carbon nanotube encapsulating metallic ions: molecular dynamics simulations. Journal of Applied Physics, 2004, 96, 3900-3905.	2.5	58
92	Cu Nanowire Structures Inside Carbon Nanotubes. Materials Science Forum, 2004, 449-452, 1229-1232.	0.3	1
93	Schematics and Atomistic Simulations of Nanomemory Element Based on Carbon Tube-to-Peapod Transition. Japanese Journal of Applied Physics, 2004, 43, 4447-4452.	1.5	11
94	The electroemission of endo-fullerenes from a nanotube. Nanotechnology, 2004, 15, 1825-1830.	2.6	11
95	Atomistic study of sodium nanowires encapsulated in carbon nanotubes. Physica B: Condensed Matter, 2004, 351, 144-150.	2.7	7
96	Copper nanocluster diffusion in carbon nanotube. Solid State Communications, 2004, 129, 687-690.	1.9	75
97	A Bucky shuttle three-terminal switching device: classical molecular dynamics study. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 23, 36-44.	2.7	32
98	Bucky shuttle memory system based on boron-nitride nanopeapod. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 23, 135-140.	2.7	28
99	Carbon nanotubes as nanopipette: modelling and simulations. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 23, 208-216.	2.7	39
100	Molecular dynamics study on the field effect ion transport in carbon nanotube. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 24, 349-354.	2.7	7
101	â€~Carbon nanotube shuttle' memory device. Carbon, 2004, 42, 3018-3021.	10.3	23
102	Molecular Dynamics Simulations of Single-wall GaN Nanotubes. Molecular Simulation, 2004, 30, 29-35.	2.0	18
103	Twist of hypothetical silicon nanotubes. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 1-12.	2.0	27
104	Comparison of C60encapsulations into carbon and boron nitride nanotubes. Journal of Physics Condensed Matter, 2004, 16, 3901-3908.	1.8	56
105	Fullerene nano ball bearings: an atomistic study. Nanotechnology, 2004, 15, 614-621.	2.6	61
106	Comparison of III- Nitride Nanotubes: Atomistic Simulations. Materials Science Forum, 2004, 449-452, 1185-1188.	0.3	1
107	Nanoscale carbon nanotube motor schematics and simulations for micro-electro-mechanical machines. Nanotechnology, 2004, 15, 1633-1638.	2.6	88
108	Atomistic study of III-nitride nanotubes. Computational Materials Science, 2004, 31, 237-246.	3.0	47

#	Article	IF	CITATIONS
109	Fullerene Shuttle Memory Device: Classical Molecular Dynamics Study. Journal of the Physical Society of Japan, 2004, 73, 1077-1081.	1.6	28
110	Fullerene Shuttle Memory Device Based on Nanopeapod: Classical Molecular Dynamics Study. Journal of Computational and Theoretical Nanoscience, 2004, 1, 199-203.	0.4	14
111	Structures of ultrathin copper nanowires encapsulated in carbon nanotubes. Physical Review B, 2003, 68, .	3.2	113
112	Molecular dynamics simulations of ultra-thin Cu nanowires. Computational Materials Science, 2003, 27, 305-312.	3.0	26
113	Atomic Scale Simulations of Silicon Nanotubes under Axial Compression: AFM Application. AIP Conference Proceedings, 2003, , .	0.4	0
114	Hypothetical silicon nanotubes under axial compression. Nanotechnology, 2003, 14, 402-408.	2.6	26
115	Molecular Dynamics Simulations on Melting Properties of Free Icosahedral Copper Clusters. Transactions on Electrical and Electronic Materials, 2003, 4, 1-6.	1.9	0
116	Atomic-scale simulations of copper polyhedral nanorods. Nanotechnology, 2002, 13, 524-532.	2.6	16
117	Structures of ultrathin copper nanotubes. Journal of Physics Condensed Matter, 2002, 14, 8997-9005.	1.8	35
118	Defects in ultrathin copper nanowires:â€f Atomistic simulations. Physical Review B, 2002, 66, .	3.2	24
119	An atomistic simulation study of cylindrical ultrathin Cu nanowires. Molecular Simulation, 2002, 28, 1021-1030.	2.0	13
120	Molecular dynamics simulations of energetic aluminum cluster deposition. Computational Materials Science, 2002, 23, 105-110.	3.0	17
121	Thermal properties of ultra-thin copper nanobridges. Nanotechnology, 2002, 13, 503-509.	2.6	20
122	Molecular Dynamics Study of Hypothetical Silicon Nanotubes Using the Tersoff Potential. Journal of Nanoscience and Nanotechnology, 2002, 2, 687-691.	0.9	8
123	Mechanical deformation study of copper nanowire using atomistic simulation. Nanotechnology, 2001, 12, 295-300.	2.6	78
124	Molecular dynamics simulations of ionized cluster beam deposition: case of study of aluminum. Computational Materials Science, 2001, 21, 509-514.	3.0	17
125	Cluster deposition study by molecular dynamics simulation: Al and Cu cluster. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1902-1906.	2.1	13
126	Molecular-dynamics study of the interaction between energetic Al clusters and an Al surface. Physical Review B, 2001, 64, .	3.2	14

#	Article	IF	CITATIONS
127	Ultra-low-energy ion-implant simulation using computational-efficient molecular dynamics schemes and the local damage accumulation model. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 458.	1.6	2