## Sara H Olson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7267883/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Intraepithelial CD8 <sup>+</sup> tumor-infiltrating lymphocytes and a high<br>CD8 <sup>+</sup> /regulatory T cell ratio are associated with favorable prognosis in ovarian cancer.<br>Proceedings of the National Academy of Sciences of the United States of America, 2005, 102,<br>18538-18543. | 7.1  | 2,100     |
| 2  | Type I and II Endometrial Cancers: Have They Different Risk Factors?. Journal of Clinical Oncology, 2013, 31, 2607-2618.                                                                                                                                                                          | 1.6  | 613       |
| 3  | Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nature Genetics, 2009, 41, 986-990.                                                                                                                                       | 21.4 | 597       |
| 4  | A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nature Genetics, 2010, 42, 224-228.                                                                                                                                  | 21.4 | 539       |
| 5  | Detectable clonal mosaicism and its relationship to aging and cancer. Nature Genetics, 2012, 44, 651-658.                                                                                                                                                                                         | 21.4 | 519       |
| 6  | Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature Genetics, 2013, 45, 371-384.                                                                                                                                   | 21.4 | 493       |
| 7  | Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases. JAMA Oncology, 2017, 3, 636.                                                                                                                                                                                  | 7.1  | 376       |
| 8  | GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nature Genetics, 2013, 45, 362-370.                                                                                                                                                               | 21.4 | 326       |
| 9  | Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nature Genetics, 2014, 46, 994-1000.                                                                                                                                                                 | 21.4 | 294       |
| 10 | Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discovery, 2016, 6, 166-175.                                                                                                                                                                      | 9.4  | 282       |
| 11 | Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nature Genetics, 2017, 49, 789-794.                                                                                                       | 21.4 | 259       |
| 12 | Preoperative Predictors for Complications after Pancreaticoduodenectomy: Impact of BMI and Body<br>Fat Distribution. Journal of Gastrointestinal Surgery, 2008, 12, 270-278.                                                                                                                      | 1.7  | 241       |
| 13 | Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer.<br>Nature Genetics, 2015, 47, 911-916.                                                                                                                                                    | 21.4 | 224       |
| 14 | Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nature Genetics, 2015, 47, 164-171.                                                                                                                                                                         | 21.4 | 221       |
| 15 | Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nature<br>Communications, 2018, 9, 556.                                                                                                                                                                  | 12.8 | 188       |
| 16 | Aspirin, Nonaspirin Nonsteroidal Anti-inflammatory Drug, and Acetaminophen Use and Risk of Invasive<br>Epithelial Ovarian Cancer: A Pooled Analysis in the Ovarian Cancer Association Consortium. Journal<br>of the National Cancer Institute, 2014, 106, djt431-djt431.                          | 6.3  | 186       |
| 17 | The Growing Burden of Endometrial Cancer: A Major Racial Disparity Affecting Black Women. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1407-1415.                                                                                                                                     | 2.5  | 181       |
| 18 | Germline Mutations in Shelterin Complex Genes Are Associated With Familial Glioma. Journal of the National Cancer Institute, 2015, 107, 384.                                                                                                                                                      | 6.3  | 172       |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Obesity and risk of ovarian cancer subtypes: evidence from the Ovarian Cancer Association Consortium. Endocrine-Related Cancer, 2013, 20, 251-262.                                                                              | 3.1  | 169       |
| 20 | Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify<br>Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discovery, 2016, 6,<br>1052-1067.                | 9.4  | 157       |
| 21 | Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for<br>Thirteen Cancer Types. Journal of the National Cancer Institute, 2015, 107, djv279.                                            | 6.3  | 152       |
| 22 | Feasibility and Yield of Screening in Relatives From Familial Pancreatic Cancer Families. American<br>Journal of Gastroenterology, 2011, 106, 946-954.                                                                          | 0.4  | 151       |
| 23 | Tubal ligation and risk of ovarian cancer subtypes: a pooled analysis of case-control studies.<br>International Journal of Epidemiology, 2013, 42, 579-589.                                                                     | 1.9  | 146       |
| 24 | Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer. Nature Communications, 2013, 4, 1628.                                                                        | 12.8 | 144       |
| 25 | An Absolute Risk Model to Identify Individuals at Elevated Risk for Pancreatic Cancer in the General<br>Population. PLoS ONE, 2013, 8, e72311.                                                                                  | 2.5  | 120       |
| 26 | Association of vitamin D levels and risk of ovarian cancer: a Mendelian randomization study.<br>International Journal of Epidemiology, 2016, 45, 1619-1630.                                                                     | 1.9  | 111       |
| 27 | Evaluation of Random Digit Dialing as a Method of Control Selection in Case–Control Studies.<br>American Journal of Epidemiology, 1992, 135, 210-222.                                                                           | 3.4  | 102       |
| 28 | Variants in Estrogen Biosynthesis Genes, Sex Steroid Hormone Levels, and Endometrial Cancer: A HuGE<br>Review. American Journal of Epidemiology, 2007, 165, 235-245.                                                            | 3.4  | 102       |
| 29 | Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer. Carcinogenesis, 2012, 33, 1384-1390.                                            | 2.8  | 102       |
| 30 | Characterization of Large Structural Genetic Mosaicism in Human Autosomes. American Journal of<br>Human Genetics, 2015, 96, 487-497.                                                                                            | 6.2  | 101       |
| 31 | Transcriptional regulation by NR5A2 links differentiation and inflammation in the pancreas. Nature, 2018, 554, 533-537.                                                                                                         | 27.8 | 101       |
| 32 | Identification and molecular characterization of a new ovarian cancer susceptibility locus at 17q21.31.<br>Nature Communications, 2013, 4, 1627.                                                                                | 12.8 | 98        |
| 33 | Lung Cancer Risk in White and Black Americans. Annals of Epidemiology, 2003, 13, 294-302.                                                                                                                                       | 1.9  | 95        |
| 34 | Imputation and subset-based association analysis across different cancer types identifies multiple<br>independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Human Molecular Genetics,<br>2014, 23, 6616-6633. | 2.9  | 90        |
| 35 | Approaching a Scientific Consensus on the Association between Allergies and Glioma Risk: A Report from the Glioma International Case-Control Study. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 282-290.           | 2.5  | 89        |
| 36 | Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. Oncotarget, 2016, 7, 66328-66343.                                                                                     | 1.8  | 88        |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Exercise, occupational activity, and risk of endometrial cancer. Annals of Epidemiology, 1997, 7, 46-53.                                                                                                                | 1.9  | 87        |
| 38 | Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nature Communications, 2016, 7, 11843.                                                                            | 12.8 | 86        |
| 39 | Cigarette smoking and risk of ovarian cancer: a pooled analysis of 21 case–control studies. Cancer<br>Causes and Control, 2013, 24, 989-1004.                                                                           | 1.8  | 84        |
| 40 | Risk of lung carcinoma among users of nonsteroidal antiinflammatory drugs. Cancer, 2003, 97,<br>1732-1736.                                                                                                              | 4.1  | 80        |
| 41 | BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers. Journal of the National Cancer Institute, 2016, 108, djv315.                                                                 | 6.3  | 77        |
| 42 | Age at Last Birth in Relation to Risk of Endometrial Cancer: Pooled Analysis in the Epidemiology of<br>Endometrial Cancer Consortium. American Journal of Epidemiology, 2012, 176, 269-278.                             | 3.4  | 76        |
| 43 | Body mass index, weight gain, and risk of endometrial cancer. Nutrition and Cancer, 1995, 23, 141-149.                                                                                                                  | 2.0  | 75        |
| 44 | Influence of Type of Cigarette on Peripheral versus Central Lung Cancer. Cancer Epidemiology<br>Biomarkers and Prevention, 2005, 14, 576-581.                                                                           | 2.5  | 74        |
| 45 | GLIOGENE—an International Consortium to Understand Familial Glioma. Cancer Epidemiology<br>Biomarkers and Prevention, 2007, 16, 1730-1734.                                                                              | 2.5  | 74        |
| 46 | Risk of Endometrial Cancer in Relation to Medical Conditions and Medication Use. Cancer<br>Epidemiology Biomarkers and Prevention, 2009, 18, 1448-1456.                                                                 | 2.5  | 71        |
| 47 | Phytoestrogen consumption from foods and supplements and epithelial ovarian cancer risk: a population-based case control study. BMC Women's Health, 2011, 11, 40.                                                       | 2.0  | 71        |
| 48 | Adult body mass index and risk of ovarian cancer by subtype: a Mendelian randomization study.<br>International Journal of Epidemiology, 2016, 45, 884-895.                                                              | 1.9  | 71        |
| 49 | Phytoestrogen consumption and endometrial cancer risk: a population-based case–control study in<br>New Jersey. Cancer Causes and Control, 2009, 20, 1117-1127.                                                          | 1.8  | 70        |
| 50 | The Impact of Race and Comorbidity on Survival in Endometrial Cancer. Cancer Epidemiology<br>Biomarkers and Prevention, 2012, 21, 753-760.                                                                              | 2.5  | 70        |
| 51 | The oral microbiota in patients with pancreatic cancer, patients with IPMNs, and controls: a pilot study. Cancer Causes and Control, 2017, 28, 959-969.                                                                 | 1.8  | 69        |
| 52 | Shared genetics underlying epidemiological association between endometriosis and ovarian cancer.<br>Human Molecular Genetics, 2015, 24, 5955-5964.                                                                      | 2.9  | 68        |
| 53 | Allergies, obesity, other risk factors and survival from pancreatic cancer. International Journal of Cancer, 2010, 127, 2412-2419.                                                                                      | 5.1  | 66        |
| 54 | Mutations in the pancreatic secretory enzymes <i>CPA1</i> and <i>CPB1</i> are associated with pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4767-4772. | 7.1  | 65        |

Sara H Olson

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer. Nature Communications, 2015, 6, 8234.                                                                      | 12.8 | 63        |
| 56 | Two Estrogen-Related Variants in <i>CYP19A1</i> and Endometrial Cancer Risk: A Pooled Analysis in the Epidemiology of Endometrial Cancer Consortium. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 242-247.         | 2.5  | 61        |
| 57 | Weight Loss, Diabetes, Fatigue, and Depression Preceding Pancreatic Cancer. Pancreas, 2016, 45, 986-991.                                                                                                                       | 1.1  | 61        |
| 58 | Pelvic Inflammatory Disease and the Risk of Ovarian Cancer and Borderline Ovarian Tumors: A Pooled<br>Analysis of 13 Case-Control Studies. American Journal of Epidemiology, 2017, 185, 8-20.                                  | 3.4  | 61        |
| 59 | Allergies, variants in IL-4 and IL-4Rα genes, and risk of pancreatic cancer. Cancer Detection and Prevention, 2007, 31, 345-351.                                                                                               | 2.1  | 58        |
| 60 | The Obesity-Associated Polymorphisms FTO rs9939609 and MC4R rs17782313 and Endometrial Cancer Risk in Non-Hispanic White Women. PLoS ONE, 2011, 6, e16756.                                                                     | 2.5  | 58        |
| 61 | Reporting Participation in Case-Control Studies. Epidemiology, 2002, 13, 123-126.                                                                                                                                              | 2.7  | 57        |
| 62 | <scp><i>TERT</i></scp> gene harbors multiple variants associated with pancreatic cancer susceptibility. International Journal of Cancer, 2015, 137, 2175-2183.                                                                 | 5.1  | 57        |
| 63 | Sex-specific glioma genome-wide association study identifies new risk locus at 3p21.31 in females, and finds sex-differences in risk at 8q24.21. Scientific Reports, 2018, 8, 7352.                                            | 3.3  | 56        |
| 64 | Intrauterine devices and endometrial cancer risk: A pooled analysis of the <scp>E</scp> pidemiology of <scp>E</scp> ndometrial <scp>C</scp> ancer <scp>C</scp> onsortium. International Journal of Cancer, 2015, 136, E410-22. | 5.1  | 54        |
| 65 | A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility<br>Genes for Epithelial Ovarian Cancer Risk. Cancer Research, 2018, 78, 5419-5430.                                              | 0.9  | 54        |
| 66 | Epidemiology of pancreatic cancer and the role of family history. Journal of Surgical Oncology, 2013, 107, 1-7.                                                                                                                | 1.7  | 53        |
| 67 | Breastfeeding and Endometrial Cancer Risk. Obstetrics and Gynecology, 2017, 129, 1059-1067.                                                                                                                                    | 2.4  | 52        |
| 68 | Sex-specific gene and pathway modeling of inherited glioma risk. Neuro-Oncology, 2019, 21, 71-82.                                                                                                                              | 1.2  | 52        |
| 69 | Relation of Time since Last Birth and Parity to Survival of Young Women with Breast Cancer.<br>Epidemiology, 1998, 9, 669-671.                                                                                                 | 2.7  | 50        |
| 70 | Reported Participation in Case-Control Studies: Changes over Time. American Journal of Epidemiology, 2001, 154, 574-581.                                                                                                       | 3.4  | 48        |
| 71 | Functional Polymorphisms in the TERT Promoter Are Associated with Risk of Serous Epithelial Ovarian and Breast Cancers. PLoS ONE, 2011, 6, e24987.                                                                             | 2.5  | 48        |
| 72 | Risk of Ovarian Cancer and the NF-κB Pathway: Genetic Association with <i>IL1A</i> and <i>TNFSF10</i> .<br>Cancer Research, 2014, 74, 852-861.                                                                                 | 0.9  | 48        |

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Analysis of Heritability and Genetic Architecture of Pancreatic Cancer: A PanC4 Study. Cancer<br>Epidemiology Biomarkers and Prevention, 2019, 28, 1238-1245.                                            | 2.5  | 48        |
| 74 | Allergies and Risk of Pancreatic Cancer: A Pooled Analysis From the Pancreatic Cancer Case-Control<br>Consortium. American Journal of Epidemiology, 2013, 178, 691-700.                                  | 3.4  | 46        |
| 75 | Impact of Obesity and Body Fat Distribution on Survival After Pancreaticoduodenectomy for<br>Pancreatic Adenocarcinoma. Annals of Surgical Oncology, 2012, 19, 2908-2916.                                | 1.5  | 45        |
| 76 | The Glioma International Case-Control Study: A Report From the Genetic Epidemiology of Glioma<br>International Consortium. American Journal of Epidemiology, 2016, 183, kwv235.                          | 3.4  | 45        |
| 77 | Genome-Wide High-Density SNP Linkage Search for Glioma Susceptibility Loci: Results from the<br>Gliogene Consortium. Cancer Research, 2011, 71, 7568-7575.                                               | 0.9  | 44        |
| 78 | Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk. PLoS<br>ONE, 2015, 10, e0128106.                                                                          | 2.5  | 44        |
| 79 | Genome-wide association study of endometrial cancer in E2C2. Human Genetics, 2014, 133, 211-224.                                                                                                         | 3.8  | 42        |
| 80 | Dietary Antioxidants, Supplements, and Risk of Epithelial Ovarian Cancer. Nutrition and Cancer, 2001,<br>40, 92-98.                                                                                      | 2.0  | 41        |
| 81 | Axonal guidance signaling pathway interacting with smoking in modifying the risk of pancreatic cancer: a gene- and pathway-based interaction analysis of GWAS data. Carcinogenesis, 2014, 35, 1039-1045. | 2.8  | 41        |
| 82 | A Replication Study and Genome-Wide Scan of Single-Nucleotide Polymorphisms Associated with<br>Pancreatic Cancer Risk and Overall Survival. Clinical Cancer Research, 2012, 18, 3942-3951.               | 7.0  | 40        |
| 83 | Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility<br>loci. Human Molecular Genetics, 2015, 24, 3595-3607.                                            | 2.9  | 40        |
| 84 | Risk factors for endometrial cancer in black and white women: a pooled analysis from the<br>epidemiology of endometrial cancer consortium (E2C2). Cancer Causes and Control, 2015, 26, 287-296.          | 1.8  | 40        |
| 85 | Functional characterization of a multi-cancer risk locus on chr5p15.33 reveals regulation of TERT by ZNF148. Nature Communications, 2017, 8, 15034.                                                      | 12.8 | 40        |
| 86 | Proportion of cancer in a Middle eastern country attributable to established risk factors. BMC Cancer, 2017, 17, 337.                                                                                    | 2.6  | 40        |
| 87 | Healthy eating index and ovarian cancer risk. Cancer Causes and Control, 2011, 22, 563-571.                                                                                                              | 1.8  | 39        |
| 88 | Impact of atopy on risk of glioma: a Mendelian randomisation study. BMC Medicine, 2018, 16, 42.                                                                                                          | 5.5  | 38        |
| 89 | Comorbidities and endometrial cancer survival in Hispanics and non-Hispanic whites. Cancer Causes and Control, 2013, 24, 61-69.                                                                          | 1.8  | 37        |
| 90 | Evidence of a genetic link between endometriosis and ovarian cancer. Fertility and Sterility, 2016, 105, 35-43.e10.                                                                                      | 1.0  | 37        |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Total and individual antioxidant intake and risk of epithelial ovarian cancer. BMC Cancer, 2012, 12, 211.                                                                                                                            | 2.6 | 36        |
| 92  | The influence of comorbid conditions on racial disparities inÂendometrial cancer survival. American<br>Journal of Obstetrics and Gynecology, 2014, 211, 627.e1-627.e9.                                                               | 1.3 | 36        |
| 93  | History of chickenpox in glioma risk: a report from the glioma international case–control study<br>( <scp>GICC</scp> ). Cancer Medicine, 2016, 5, 1352-1358.                                                                         | 2.8 | 36        |
| 94  | Epidemiology of pancreatic adenocarcinoma. Chinese Clinical Oncology, 2017, 6, 24-24.                                                                                                                                                | 1.2 | 34        |
| 95  | Genes–Environment Interactions in Obesity- and Diabetes-Associated Pancreatic Cancer: A GWAS Data<br>Analysis. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 98-106.                                                      | 2.5 | 32        |
| 96  | Chronic Recreational Physical Inactivity and Epithelial Ovarian Cancer Risk: Evidence from the Ovarian<br>Cancer Association Consortium. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1114-1124.                         | 2.5 | 32        |
| 97  | Risk Prediction for Epithelial Ovarian Cancer in 11 United States–Based Case-Control Studies:<br>Incorporation of Epidemiologic Risk Factors and 17 Confirmed Genetic Loci. American Journal of<br>Epidemiology, 2016, 184, 555-569. | 3.4 | 32        |
| 98  | Glioma-related seizures in relation to histopathological subtypes: a report from the glioma<br>international case–control study. Journal of Neurology, 2018, 265, 1432-1442.                                                         | 3.6 | 32        |
| 99  | Influence of obesity-related risk factors in the aetiology of glioma. British Journal of Cancer, 2018, 118, 1020-1027.                                                                                                               | 6.4 | 32        |
| 100 | Total and individual antioxidant intake and endometrial cancer risk: results from a population-based case–control study in New Jersey. Cancer Causes and Control, 2012, 23, 887-895.                                                 | 1.8 | 30        |
| 101 | Description of selected characteristics of familial glioma patients – Results from the Gliogene<br>Consortium. European Journal of Cancer, 2013, 49, 1335-1345.                                                                      | 2.8 | 30        |
| 102 | Variants in hormone biosynthesis genes and risk of endometrial cancer. Cancer Causes and Control, 2008, 19, 955-963.                                                                                                                 | 1.8 | 29        |
| 103 | Selected medical conditions and risk of pancreatic cancer. Molecular Carcinogenesis, 2012, 51, 75-97.                                                                                                                                | 2.7 | 29        |
| 104 | Vitamin D Metabolic Pathway Genes and Pancreatic Cancer Risk. PLoS ONE, 2015, 10, e0117574.                                                                                                                                          | 2.5 | 29        |
| 105 | Germline PALB2 mutation analysis in breast-pancreas cancer families. Journal of Medical Genetics, 2011, 48, 523-525.                                                                                                                 | 3.2 | 28        |
| 106 | Recent alcohol consumption and risk of incident ovarian carcinoma: a pooled analysis of 5,342 cases and 10,358 controls from the Ovarian Cancer Association Consortium. BMC Cancer, 2013, 13, 28.                                    | 2.6 | 28        |
| 107 | Network-Based Integration of GWAS and Gene Expression Identifies a <i>HOX</i> -Centric Network<br>Associated with Serous Ovarian Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24,<br>1574-1584.                 | 2.5 | 28        |
| 108 | Survey of familial glioma and role of germline p16 INK4A /p14 ARF and p53 mutation. Familial Cancer, 2010, 9, 413-421.                                                                                                               | 1.9 | 26        |

Sara H Olson

| #   | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Characterising <i>cis</i> -regulatory variation in the transcriptome of histologically normal and tumour-derived pancreatic tissues. Gut, 2018, 67, 521-533.                                                                    | 12.1 | 26        |
| 110 | Transcriptome-Wide Association Study Identifies New Candidate Susceptibility Genes for Glioma.<br>Cancer Research, 2019, 79, 2065-2071.                                                                                         | 0.9  | 26        |
| 111 | Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC).<br>Journal of Genetics and Genome Research, 2015, 2, .                                                                          | 0.3  | 25        |
| 112 | Common variants at the <i>CHEK2</i> gene locus and risk of epithelial ovarian cancer. Carcinogenesis, 2015, 36, 1341-1353.                                                                                                      | 2.8  | 24        |
| 113 | Functional characterization of a chr13q22.1 pancreatic cancer risk locus reveals long-range<br>interaction and allele-specific effects on <i>DIS3</i> expression. Human Molecular Genetics, 2016, 25,<br>ddw300.                | 2.9  | 24        |
| 114 | Maximizing resources to study an uncommon cancer: E2C2—Epidemiology of Endometrial Cancer<br>Consortium. Cancer Causes and Control, 2009, 20, 491-496.                                                                          | 1.8  | 23        |
| 115 | Genome-wide association study of subtype-specific epithelial ovarian cancer risk alleles using pooled DNA. Human Genetics, 2014, 133, 481-497.                                                                                  | 3.8  | 23        |
| 116 | Mendelian randomisation study of the relationship between vitamin D and risk of glioma. Scientific<br>Reports, 2018, 8, 2339.                                                                                                   | 3.3  | 23        |
| 117 | Glioma risk associated with extent of estimated European genetic ancestry in African Americans and<br>Hispanics. International Journal of Cancer, 2020, 146, 739-748.                                                           | 5.1  | 23        |
| 118 | Polygenic risk modeling for prediction of epithelial ovarian cancer risk. European Journal of Human<br>Genetics, 2022, 30, 349-362.                                                                                             | 2.8  | 23        |
| 119 | Adherence to the dietary guidelines for Americans and endometrial cancer risk. Cancer Causes and Control, 2010, 21, 1895-1904.                                                                                                  | 1.8  | 22        |
| 120 | Epithelialâ€Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk.<br>Genetic Epidemiology, 2015, 39, 689-697.                                                                                    | 1.3  | 22        |
| 121 | Targeted Sequencing in Chromosome 17q Linkage Region Identifies Familial Glioma Candidates in the<br>Gliogene Consortium. Scientific Reports, 2015, 5, 8278.                                                                    | 3.3  | 22        |
| 122 | Large-Scale Evaluation of Common Variation in Regulatory T Cell–Related Genes and Ovarian Cancer<br>Outcome. Cancer Immunology Research, 2014, 2, 332-340.                                                                      | 3.4  | 21        |
| 123 | Ageâ€specific genomeâ€wide association study in glioblastoma identifies increased proportion of â€~lower<br>grade glioma'â€like features associated with younger age. International Journal of Cancer, 2018, 143,<br>2359-2366. | 5.1  | 21        |
| 124 | Agnostic Pathway/Gene Set Analysis of Genome-Wide Association Data Identifies Associations for<br>Pancreatic Cancer. Journal of the National Cancer Institute, 2019, 111, 557-567.                                              | 6.3  | 21        |
| 125 | A Variable Age of Onset Segregation Model for Linkage Analysis, with Correction for Ascertainment, Applied to Glioma. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 2242-2251.                                       | 2.5  | 20        |
| 126 | Insight in glioma susceptibility through an analysis of 6p22.3, 12p13.33-12.1, 17q22-23.2 and 18q23 SNP genotypes in familial and non-familial glioma. Human Genetics, 2012, 131, 1507-1517.                                    | 3.8  | 20        |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Analysis of Over 10,000 Cases Finds No Association between Previously Reported Candidate<br>Polymorphisms and Ovarian Cancer Outcome. Cancer Epidemiology Biomarkers and Prevention, 2013,<br>22, 987-992.       | 2.5 | 20        |
| 128 | Dietary inflammatory index and ovarian cancer risk in a New Jersey case–control study. Nutrition, 2018, 46, 78-82.                                                                                               | 2.4 | 20        |
| 129 | Sugary food and beverage consumption and epithelial ovarian cancer risk: a population-based case–control study. BMC Cancer, 2013, 13, 94.                                                                        | 2.6 | 19        |
| 130 | Assessing the genetic architecture of epithelial ovarian cancer histological subtypes. Human Genetics, 2016, 135, 741-756.                                                                                       | 3.8 | 19        |
| 131 | GWAS meta-analysis of 16 852 women identifies new susceptibility locus for endometrial cancer.<br>Human Molecular Genetics, 2016, 25, ddw092.                                                                    | 2.9 | 19        |
| 132 | Lack of association between modifiable exposures and glioma risk: A Mendelian randomisation analysis. Neuro-Oncology, 2020, 22, 207-215.                                                                         | 1.2 | 19        |
| 133 | Racial Differences in Oncogene Mutations Detected in Early-Stage Low-Grade Endometrial Cancers.<br>International Journal of Gynecological Cancer, 2012, 22, 1367-1372.                                           | 2.5 | 18        |
| 134 | No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecologic Oncology, 2016, 141, 386-401.                                                                                           | 1.4 | 18        |
| 135 | Alcohol Consumption and Endometrial Cancer: Some Unresolved Issues. Nutrition and Cancer, 2003, 45, 24-29.                                                                                                       | 2.0 | 17        |
| 136 | Including Additional Controls from Public Databases Improves the Power of a Genome-Wide Association Study. Human Heredity, 2011, 72, 21-34.                                                                      | 0.8 | 17        |
| 137 | Exome genotyping arrays to identify rare and low frequency variants associated with epithelial ovarian cancer risk. Human Molecular Genetics, 2016, 25, 3600-3612.                                               | 2.9 | 17        |
| 138 | Coffee and tea consumption and endometrial cancer risk in a population-based study in New Jersey.<br>Cancer Causes and Control, 2010, 21, 1467-1473.                                                             | 1.8 | 16        |
| 139 | Consortium analysis of gene and gene–folate interactions in purine and pyrimidine metabolism<br>pathways with ovarian carcinoma risk. Molecular Nutrition and Food Research, 2014, 58, 2023-2035.                | 3.3 | 16        |
| 140 | Evaluating the ovarian cancer gonadotropin hypothesis: A candidate gene study. Gynecologic<br>Oncology, 2015, 136, 542-548.                                                                                      | 1.4 | 15        |
| 141 | Adult height is associated with increased risk of ovarian cancer: a Mendelian randomisation study.<br>British Journal of Cancer, 2018, 118, 1123-1129.                                                           | 6.4 | 15        |
| 142 | Aspirin, NSAIDs, and Glioma Risk: Original Data from the Glioma International Case–Control Study and a Meta-analysis. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 555-562.                          | 2.5 | 15        |
| 143 | The Association of Recently Diagnosed Diabetes and Long-term Diabetes With Survival in Pancreatic Cancer Patients. Pancreas, 2018, 47, 314-320.                                                                  | 1.1 | 14        |
| 144 | Pregnancy outcomes and risk of endometrial cancer: A pooled analysis of individual participant data in the Epidemiology of Endometrial Cancer Consortium. International Journal of Cancer, 2021, 148, 2068-2078. | 5.1 | 14        |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Genome-wide analysis of the role of copy-number variation in pancreatic cancer risk. Frontiers in<br>Genetics, 2014, 5, 29.                                                                        | 2.3 | 13        |
| 146 | Variation in NF-κB Signaling Pathways and Survival in Invasive Epithelial Ovarian Cancer. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1421-1427.                                      | 2.5 | 13        |
| 147 | Body Mass Index Genetic Risk Score and Endometrial Cancer Risk. PLoS ONE, 2015, 10, e0143256.                                                                                                      | 2.5 | 13        |
| 148 | A region-based gene association study combined with a leave-one-out sensitivity analysis identifies SMG1 as a pancreatic cancer susceptibility gene. PLoS Genetics, 2019, 15, e1008344.            | 3.5 | 13        |
| 149 | Inherited variants affecting RNA editing may contribute to ovarian cancer susceptibility: results from a large-scale collaboration. Oncotarget, 2016, 7, 72381-72394.                              | 1.8 | 13        |
| 150 | Exome-Wide Association Study of Endometrial Cancer in a Multiethnic Population. PLoS ONE, 2014, 9, e97045.                                                                                         | 2.5 | 12        |
| 151 | A comprehensive gene–environment interaction analysis in Ovarian Cancer using genomeâ€wide<br>significant common variants. International Journal of Cancer, 2019, 144, 2192-2205.                  | 5.1 | 12        |
| 152 | Partitioned glioma heritability shows subtype-specific enrichment in immune cells. Neuro-Oncology, 2021, 23, 1304-1314.                                                                            | 1.2 | 12        |
| 153 | Diagnostic X-Rays and Risk of Epithelial Ovarian Carcinoma in Jews. Annals of Epidemiology, 2002, 12, 426-434.                                                                                     | 1.9 | 11        |
| 154 | Germline rearrangements in families with strong family history of glioma and malignant melanoma, colon, and breast cancer. Neuro-Oncology, 2014, 16, 1333-1340.                                    | 1.2 | 11        |
| 155 | Serum Immunoglobulin E and Risk of Pancreatic Cancer in the Prostate, Lung, Colorectal, and Ovarian<br>Cancer Screening Trial. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1414-1420. | 2.5 | 11        |
| 156 | Menstrual and Reproductive Factors, Hormone Use, and Risk of Pancreatic Cancer. Pancreas, 2016, 45, 1401-1410.                                                                                     | 1.1 | 10        |
| 157 | Consumption of sugary foods and drinks and risk of endometrial cancer. Cancer Causes and Control, 2013, 24, 1427-1436.                                                                             | 1.8 | 9         |
| 158 | Variants in genes encoding small GTPases and association with epithelial ovarian cancer susceptibility. PLoS ONE, 2018, 13, e0197561.                                                              | 2.5 | 9         |
| 159 | Searching for causal relationships of glioma: a phenome-wide Mendelian randomisation study. British<br>Journal of Cancer, 2021, 124, 447-454.                                                      | 6.4 | 9         |
| 160 | Epithelial Ovarian Carcinoma and Fertility of Parents. Epidemiology, 2002, 13, 59-65.                                                                                                              | 2.7 | 8         |
| 161 | Genome-Wide Association Study for Ovarian Cancer Susceptibility Using Pooled DNA. Twin Research and Human Genetics, 2012, 15, 615-623.                                                             | 0.6 | 8         |
| 162 | A splicing variant of <i>TERT</i> identified by GWAS interacts with menopausal estrogen therapy in risk of ovarian cancer. International Journal of Cancer, 2016, 139, 2646-2654.                  | 5.1 | 7         |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | A targeted genetic association study of epithelial ovarian cancer susceptibility. Oncotarget, 2016, 7, 7381-7389.                                                                                     | 1.8 | 7         |
| 164 | Impact of Sixteen Established Pancreatic Cancer Susceptibility Loci in American Jews. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1540-1548.                                             | 2.5 | 6         |
| 165 | Outcome of Pancreatic Cancer Surveillance Among High-Risk Individuals Tested for Germline<br>Mutations in <i>BRCA1</i> and <i>BRCA2</i> . Cancer Prevention Research, 2019, 12, 599-608.              | 1.5 | 6         |
| 166 | Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer. Oncotarget, 2016, 7, 69097-69110.                                  | 1.8 | 5         |
| 167 | Studying cancer in minorities. Cancer, 2011, 117, 2762-2769.                                                                                                                                          | 4.1 | 4         |
| 168 | Polymorphisms in genes related to one-carbon metabolism are not related to pancreatic cancer in PanScan and PanC4. Cancer Causes and Control, 2013, 24, 595-602.                                      | 1.8 | 4         |
| 169 | Statistical interactions and Bayes estimation of log odds in case-control studies. Statistical Methods<br>in Medical Research, 2017, 26, 1021-1038.                                                   | 1.5 | 3         |
| 170 | rs495139 in the TYMS-ENOSF1 Region and Risk of Ovarian Carcinoma of Mucinous Histology.<br>International Journal of Molecular Sciences, 2018, 19, 2473.                                               | 4.1 | 3         |
| 171 | A pooled genome-wide association study identifies pancreatic cancer susceptibility loci on chromosome 19p12 and 19p13.3 in the full-Jewish population. Human Genetics, 2021, 140, 309-319.            | 3.8 | 2         |
| 172 | Gallbladder disease, cholecystectomy, and pancreatic cancer risk in the International Pancreatic<br>Cancer Case-Control Consortium (PanC4). European Journal of Cancer Prevention, 2020, 29, 408-415. | 1.3 | 1         |
| 173 | The Essential Epidemiology of Cancer of the Endometrium: An Update. Current Clinical Oncology, 2016, , 1-11.                                                                                          | 0.0 | 0         |
| 174 | Chronic Recreational Physical Inactivity and Epithelial Ovarian Cancer Risk. Obstetrical and Gynecological Survey, 2016, 71, 528-530.                                                                 | 0.4 | 0         |
| 175 | Bayesian copy number detection and association in large-scale studies. BMC Cancer, 2020, 20, 856.                                                                                                     | 2.6 | 0         |
| 176 | The p.Ser64Leu and p.Pro104Leu missense variants of PALB2 identified in familial pancreatic cancer patients compromise the DNA damage response. Human Mutation, 2021, 42, 150-163.                    | 2.5 | 0         |