
Elham A Ghabbour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7267821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	National Comparison of the Total and Sequestered Organic Matter Contents of Conventional and Organic Farm Soils. Advances in Agronomy, 2017, 146, 1-35.	5.2	29
2	Soil Color and US Northeast Aquods. Soil Science Society of America Journal, 2016, 80, 965-972.	2.2	2
3	Measuring the Total and Sequestered Organic Matter Contents of Grassland and Forest Soil Profiles in the National Ecological Observatory Network Initiative. Soil Horizons, 2015, 56, 1-11.	0.3	4
4	Optimized conditions for determination of total soil organic matter in diverse samples by mass loss on ignition. Journal of Plant Nutrition and Soil Science, 2014, 177, 914-919.	1.9	18
5	Measuring the Retained Water and Sequestered Organic Carbon Contents of Soil Profiles in Aroostook and Piscataquis Counties, Maine, USA. Soil Horizons, 2013, 54, 1.	0.3	3
6	National Soil Project Underway at Northeastern University — Assistance Requested. Soil Horizons, 2011, 52, 61.	0.3	0
7	Environmental insights from Langmuir adsorption site capacities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 381, 37-40.	4.7	8
8	XAFS studies of cobalt(II) binding by solid peat and soil-derived humic acids and plant-derived humic acid-like substances. Chemosphere, 2007, 67, 285-291.	8.2	15
9	Thermodynamics of metal cation binding by a solid soil-derived humic acid: Binding of Fe(III), Pb(II), and Cu(II). Chemosphere, 2006, 63, 477-483.	8.2	33
10	Thermodynamics of metal cation binding by a solid soil derived humic acid. 2. Binding of Mn(II), and Hg(II). Chemosphere, 2006, 64, 826-833.	8.2	23
11	Spectroscopic characterization of humic acid fractions isolated from soil using different extraction procedures. Geoderma, 2006, 133, 204-216.	5.1	86
12	Thermodynamics of Peat-, Plant-, and Soil-Derived Humic Acid Sorption on Kaolinite. Environmental Science & Technology, 2004, 38, 3338-3342.	10.0	21
13	Metal binding by humic acids isolated from water hyacinth plants (Eichhornia crassipes [Mart.]) Tj ETQq1 1 0.784	1314 rgBT 7.5	/Overlock 10
14	ERRATUM Volume 139, Part 1, August 2002 page 113 Book Review by P. J. Loveland. Journal of Agricultural Science, 2003, 140, 251-251.	1.3	0
15	PROTON SPIN-LATTICE RELAXATION TIMES OF HUMIC ACIDS AS DETERMINED BY SOLUTION NMR. Soil Science, 2003, 168, 128-136.	0.9	9
16	Suitability of Different 13C Solid-state NMR Techniques in the Characterization of Humic Acids. International Journal of Environmental Analytical Chemistry, 2002, 82, 183-196.	3.3	39
17	Humic Acids: Marvelous Products of Soil Chemistry. Journal of Chemical Education, 2001, 78, 1609.	2.3	43
18	The effect of temperature on tight metal binding by peat and soil derived solid humic acids. Canadian Journal of Soil Science, 2001, 81, 331-336.	1.2	13

Elham A Ghabbour

#	Article	IF	CITATIONS
19	EVALUATION OF DIFFERENT SOLID-STATE 13C NMR TECHNIQUES FOR CHARACTERIZING HUMIC ACIDS. , 1999, , 49-61.		8
20	GENERATION OF FREE RADICALS BY HUMIC ACID: IMPLICATIONS FOR BIOLOGICAL ACTIVITY. , 1998, , 203-214.		2
21	Tight metal binding by humic acids and its role in biomineralization â€. Journal of the Chemical Society Dalton Transactions, 1997, , 4047-4060.	1.1	148
22	Adsorption of Aqueous Nucleobases, Nucleosides, and Nucleotides on Humic Acids. 3. Adsorption of Uracil, Uridine, and Uridine-5â€~-Monophosphate on a German Peat-Derived Humic Acid and Its Tightly Bound Mercury(II) Form. Journal of Physical Chemistry B, 1997, 101, 8468-8476.	2.6	13
23	A "Site Creation―Model for Specific Adsorption of Aqueous Nucleobases, Nucleosides, and Nucleotides on Compost-Derived Humic Acid. Journal of Physical Chemistry B, 1997, 101, 3228-3239.	2.6	11
24	Isolation of humic acid from the terrestrial plant Brugmansia sanguinea. Science of the Total Environment, 1997, 201, 79-87.	8.0	19
25	Supercritical fluid CO2 extraction accelerates isolation of humic acid from livePilayella littoralis (Phaeophyta). Journal of Applied Phycology, 1996, 8, 545-551.	2.8	8
26	Isolation of humic acid from the brown algaeAscophyllum nodosum, Fucus vesiculosus, Laminaria saccharina and the marine angiospermZostera marina. Journal of Applied Phycology, 1996, 8, 553-562.	2.8	27
27	The role of metal complexation in the solubility and stability of humic acid. Materials Science and Engineering C, 1996, 4, 181-187.	7.3	20
28	Structural modeling in humic acids. Materials Science and Engineering C, 1996, 4, 175-179.	7.3	53
29	Adsorption of Aqueous Nucleobases, Nucleosides, and Nucleotides on Compost-Derived Humic Acid. 1. Naturally Occurring Pyrimidines. The Journal of Physical Chemistry, 1996, 100, 2410-2416.	2.9	20
30	Adsorption of Aqueous Nucleobases, Nucleosides, and Nucleotides on Compost-Derived Humic Acid. 2. Naturally Occurring Purines1. The Journal of Physical Chemistry, 1996, 100, 2417-2421.	2.9	6
31	Humic Acids are Versatile Natural Polymers. , 1995, , 677-685.		4
32	Isolation of humic acid from the brown algaPilayella littoralis. Journal of Applied Phycology, 1994, 6, 459-468.	2.8	38
33	Adsorption mechanisms of nicotine on humic acid and clay humic acid complex. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1990, 153, 33-38.	0.4	10

Tight Metal Binding by Solid Phase Peat and Soil Humic Acids. , 0, , 371-395.