
## Julio Caballero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7267820/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | RCDPeaks: memory-efficient density peaks clustering of long molecular dynamics. Bioinformatics, 2022, 38, 1863-1869.                                                                                                                              | 1.8 | 4         |
| 2  | Dammarane triterpenes targeting α-synuclein: biological activity and evaluation of binding sites by molecular docking. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 154-162.                                                   | 2.5 | 6         |
| 3  | The latest automated docking technologies for novel drug discovery. Expert Opinion on Drug<br>Discovery, 2021, 16, 625-645.                                                                                                                       | 2.5 | 29        |
| 4  | Computational Modeling to Explain Why 5,5-Diarylpentadienamides are TRPV1 Antagonists. Molecules, 2021, 26, 1765.                                                                                                                                 | 1.7 | 6         |
| 5  | PSIQUE: Protein Secondary Structure Identification on the Basis of Quaternions and Electronic Structure Calculations. Journal of Chemical Information and Modeling, 2021, 61, 1789-1800.                                                          | 2.5 | 5         |
| 6  | BitQT: a graph-based approach to the quality threshold clustering of molecular dynamics.<br>Bioinformatics, 2021, 38, 73-79.                                                                                                                      | 1.8 | 4         |
| 7  | Bitopic Sigma 1 Receptor Modulators to Shed Light on Molecular Mechanisms Underpinning Ligand<br>Binding and Receptor Oligomerization. Journal of Medicinal Chemistry, 2021, 64, 14997-15016.                                                     | 2.9 | 6         |
| 8  | Continental and Antarctic Lichens: isolation, identification and molecular modeling of the depside<br>tenuiorin from the Antarctic lichen <i>Umbilicaria antarctica</i> as tau protein inhibitor. Natural<br>Product Research, 2020, 34, 646-650. | 1.0 | 8         |
| 9  | Quality Threshold Clustering of Molecular Dynamics: A Word of Caution. Journal of Chemical<br>Information and Modeling, 2020, 60, 467-472.                                                                                                        | 2.5 | 31        |
| 10 | BitClust: Fast Geometrical Clustering of Long Molecular Dynamics Simulations. Journal of Chemical<br>Information and Modeling, 2020, 60, 444-448.                                                                                                 | 2.5 | 20        |
| 11 | LigRMSD: a web server for automatic structure matching and RMSD calculations among identical and similar compounds in protein-ligand docking. Bioinformatics, 2020, 36, 2912-2914.                                                                | 1.8 | 84        |
| 12 | Identification of Mycobacterium tuberculosis CtpF as a target for designing new antituberculous compounds. Bioorganic and Medicinal Chemistry, 2020, 28, 115256.                                                                                  | 1.4 | 7         |
| 13 | New Insights into the Opening of the Occluded Ligand-Binding Pocket of Sigma1 Receptor: Binding of a<br>Novel Bivalent RC-33 Derivative. Journal of Chemical Information and Modeling, 2020, 60, 756-765.                                         | 2.5 | 10        |
| 14 | Coarse-Grained Parameters for Divalent Cations within the SIRAH Force Field. Journal of Chemical<br>Information and Modeling, 2020, 60, 3935-3943.                                                                                                | 2.5 | 10        |
| 15 | Multiâ€scale simulation reveals that an amino acid substitution increases photosensitizing reaction inputs in Rhodopsins. Journal of Computational Chemistry, 2020, 41, 2278-2295.                                                                | 1.5 | 1         |
| 16 | On the Nature of the Enzyme–Substrate Complex and the Reaction Mechanism in Human Arginase I. A<br>Combined Molecular Dynamics and QM/MM Study. ACS Catalysis, 2020, 10, 8321-8333.                                                               | 5.5 | 9         |
| 17 | Considerations for Docking of Selective Angiotensin-Converting Enzyme Inhibitors. Molecules, 2020, 25, 295.                                                                                                                                       | 1.7 | 35        |
| 18 | Transforming Non-Selective Angiotensin-Converting Enzyme Inhibitors in C- and N-domain Selective<br>Inhibitors by Using Computational Tools. Mini-Reviews in Medicinal Chemistry, 2020, 20, 1436-1446.                                            | 1.1 | 3         |

| #  | Article                                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Docking, Interaction Fingerprint, and Three-Dimensional Quantitative Structure–Activity Relationship<br>(3D-QSAR) of Sigma1 Receptor Ligands, Analogs of the Neuroprotective Agent RC-33. Frontiers in<br>Chemistry, 2019, 7, 496.                                                                                    | 1.8 | 14        |
| 20 | A study of the cis–trans isomerization preference of N-alkylated peptides containing phosphorus in the side chain and backbone. New Journal of Chemistry, 2019, 43, 12804-12813.                                                                                                                                      | 1.4 | 10        |
| 21 | Omega hydroxylated JA-Ile is an endogenous bioactive jasmonate that signals through the canonical jasmonate signaling pathway. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158520.                                                                                              | 1.2 | 21        |
| 22 | Discovery of Novel TASK-3 Channel Blockers Using a Pharmacophore-Based Virtual Screening.<br>International Journal of Molecular Sciences, 2019, 20, 4014.                                                                                                                                                             | 1.8 | 16        |
| 23 | Mechanistic insights into the phosphoryl transfer reaction in cyclin-dependent kinase 2: A QM/MM<br>study. PLoS ONE, 2019, 14, e0215793.                                                                                                                                                                              | 1.1 | 8         |
| 24 | Studying the phosphoryl transfer mechanism of the <i>E. coli</i> phosphofructokinase-2: from X-ray structure to quantum mechanics/molecular mechanics simulations. Chemical Science, 2019, 10, 2882-2892.                                                                                                             | 3.7 | 15        |
| 25 | Rationalizing the stability and interactions of 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium<br>2-hydroxy-3,5-dinitrobenzoate salt. Journal of Molecular Structure, 2019, 1193, 185-194.                                                                                                                     | 1.8 | 60        |
| 26 | Chalcone derivatives as non-canonical ligands of TRPV1. International Journal of Biochemistry and Cell Biology, 2019, 112, 18-23.                                                                                                                                                                                     | 1.2 | 6         |
| 27 | Structural Requirements of N-alpha-Mercaptoacetyl Dipeptide (NAMdP) Inhibitors of Pseudomonas<br>Aeruginosa Virulence Factor LasB: 3D-QSAR, Molecular Docking, and Interaction Fingerprint Studies.<br>International Journal of Molecular Sciences, 2019, 20, 6133.                                                   | 1.8 | 11        |
| 28 | Estimation of 2D autocorrelation descriptors and 2D Monte Carlo descriptors as a tool to build up predictive models for acetylcholinesterase (AChE) inhibitory activity. Chemometrics and Intelligent Laboratory Systems, 2019, 184, 14-21.                                                                           | 1.8 | 18        |
| 29 | Synthesis of diN-Substituted Glycyl-Phenylalanine Derivatives by Using Ugi Four Component Reaction and Their Potential as Acetylcholinesterase Inhibitors. Molecules, 2019, 24, 189.                                                                                                                                  | 1.7 | 1         |
| 30 | Study of the affinity between the protein kinase PKA and homoarginineâ€containing peptides derived<br>from kemptide: Free energy perturbation (FEP) calculations. Journal of Computational Chemistry, 2018,<br>39, 986-992.                                                                                           | 1.5 | 6         |
| 31 | Analyses of Synthetic <i>N</i> -Acyl Dopamine Derivatives Revealing Different Structural Requirements<br>for Their Anti-inflammatory and<br>Transient-Receptor-Potential-Channel-of-the-Vanilloid-Receptor-Subfamily-Subtype-1 (TRPV1)-Activating<br>Properties, Journal of Medicinal Chemistry, 2018, 61, 3126-3137. | 2.9 | 8         |
| 32 | Adenosine A <sub>2A</sub> receptor agonists with potent antiplatelet activity. Platelets, 2018, 29, 292-300.                                                                                                                                                                                                          | 1.1 | 20        |
| 33 | Molecular Modeling of Tau Proline-Directed Protein Kinase (PDPK) Inhibitors. Neuromethods, 2018, ,<br>305-345.                                                                                                                                                                                                        | 0.2 | 2         |
| 34 | Insights into the Structural Requirements of 2(S)-Amino-6-Boronohexanoic Acid Derivatives as<br>Arginase I Inhibitors: 3D-QSAR, Docking, and Interaction Fingerprint Studies. International Journal of<br>Molecular Sciences, 2018, 19, 2956.                                                                         | 1.8 | 6         |
| 35 | Mycobacterium tuberculosis serine/threonine protein kinases: structural information for the design of their specific ATP-competitive inhibitors. Journal of Computer-Aided Molecular Design, 2018, 32, 1315-1336.                                                                                                     | 1.3 | 18        |
| 36 | Folding and Lipid Composition Determine Membrane Interaction of the Disordered Protein COR15A.<br>Biophysical Journal, 2018, 115, 968-980.                                                                                                                                                                            | 0.2 | 21        |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without<br>Considering Available Structural Data?. Molecules, 2018, 23, 1038.                                                                        | 1.7 | 267       |
| 38 | In-Silico Design, Synthesis and Evaluation of a Nanostructured Hydrogel as a Dimethoate Removal<br>Agent. Nanomaterials, 2018, 8, 23.                                                                                                       | 1.9 | 12        |
| 39 | Computational Studies of Snake Venom Toxins. Toxins, 2018, 10, 8.                                                                                                                                                                           | 1.5 | 22        |
| 40 | Energetic differences between non-domain-swapped and domain-swapped chain connectivities in the K2P potassium channel TRAAK. RSC Advances, 2018, 8, 26610-26618.                                                                            | 1.7 | 2         |
| 41 | Predicting the stability of human lysozyme mutants using the tree-based classifier TTOSOM.<br>Chemometrics and Intelligent Laboratory Systems, 2017, 162, 65-72.                                                                            | 1.8 | 1         |
| 42 | The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2.<br>Scientific Reports, 2017, 7, 44611.                                                                                                         | 1.6 | 25        |
| 43 | Study of the interactions between Edaglitazone and Ciglitazone with PPARÎ <sup>3</sup> and their antiplatelet profile. Life Sciences, 2017, 186, 59-65.                                                                                     | 2.0 | 9         |
| 44 | Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to β sheet in tau<br>protein linked to Alzheimer's disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32,<br>945-953.                 | 2.5 | 63        |
| 45 | Docking and quantitative structure–activity relationship of bi-cyclic heteroaromatic pyridazinone<br>and pyrazolone derivatives as phosphodiesterase 3A (PDE3A) inhibitors. PLoS ONE, 2017, 12, e0189213.                                   | 1.1 | 5         |
| 46 | Is It Reliable to Use Common Molecular Docking Methods for Comparing the Binding Affinities of<br>Enantiomer Pairs for Their Protein Target?. International Journal of Molecular Sciences, 2016, 17, 525.                                   | 1.8 | 114       |
| 47 | Secondary Metabolites in Ramalina terebrata Detected by UHPLC/ESI/MS/MS and Identification of Parietin as Tau Protein Inhibitor. International Journal of Molecular Sciences, 2016, 17, 1303.                                               | 1.8 | 50        |
| 48 | Flavonoids as CDK1 Inhibitors: Insights in Their Binding Orientations and Structure-Activity Relationship. PLoS ONE, 2016, 11, e0161111.                                                                                                    | 1.1 | 27        |
| 49 | Structural and Affinity Determinants in the Interaction between Alcohol Acyltransferase from F. x<br>ananassa and Several Alcohol Substrates: A Computational Study. PLoS ONE, 2016, 11, e0153057.                                          | 1.1 | 20        |
| 50 | The Dynamic Nonprime Binding of Sampatrilat to the C-Domain of Angiotensin-Converting Enzyme.<br>Journal of Chemical Information and Modeling, 2016, 56, 2486-2494.                                                                         | 2.5 | 12        |
| 51 | Molecular dynamics simulations and CD spectroscopy reveal hydration-induced unfolding of the intrinsically disordered LEA proteins COR15A and COR15B from Arabidopsis thaliana. Physical Chemistry Chemical Physics, 2016, 18, 25806-25816. | 1.3 | 21        |
| 52 | Kristallographie - New Crystal Structures, 2016, 231, 171-173.                                                                                                                                                                              | 0.1 | 0         |
| 53 | Radiofluorinated <i>N</i> -Octanoyl Dopamine ([ <sup>18</sup> F]F-NOD) as a Tool To Study Tissue<br>Distribution and Elimination of NOD in Vitro and in Vivo. Journal of Medicinal Chemistry, 2016, 59,<br>9855-9865.                       | 2.9 | 5         |
| 54 | Computational study of the binding orientation and affinity of PPARÎ <sup>3</sup> agonists: inclusion of ligand-induced fit by cross-docking. RSC Advances, 2016, 6, 64756-64768.                                                           | 1.7 | 22        |

| #  | Article                                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | HQSAR and molecular docking studies of furanyl derivatives as adenosine A2A receptor antagonists.<br>Medicinal Chemistry Research, 2016, 25, 1316-1328.                                                                                                                                                  | 1.1 | 4         |
| 56 | Genetic Algorithm Optimization of Bayesian-Regularized Artificial Neural Networks in Drug Design. ,<br>2016, , 83-102.                                                                                                                                                                                   |     | 1         |
| 57 | Synthesis and in silico analysis of the quantitative structure–activity relationship of<br>heteroaryl–acrylonitriles as AChE inhibitors. Journal of the Taiwan Institute of Chemical Engineers,<br>2016, 59, 45-60.                                                                                      | 2.7 | 12        |
| 58 | Direct and Auger Electron-Induced, Single- and Double-Strand Breaks on Plasmid DNA Caused by<br>99mTc-Labeled Pyrene Derivatives and the Effect of Bonding Distance. PLoS ONE, 2016, 11, e0161973.                                                                                                       | 1.1 | 30        |
| 59 | Study of the Differential Activity of Thrombin Inhibitors Using Docking, QSAR, Molecular Dynamics, and MM-GBSA. PLoS ONE, 2015, 10, e0142774.                                                                                                                                                            | 1.1 | 70        |
| 60 | New insights into steric and electronic effects in a series of phosphine ligands from the perspective of local quantum similarity using the Fukui function. Journal of Molecular Modeling, 2015, 21, 45.                                                                                                 | 0.8 | 6         |
| 61 | Analyzing torquoselectivity in electrocyclic ring opening reactions of trans-3,4-dimethylcyclobutene<br>and 3-formylcyclobutene through electronic structure principles. Physical Chemistry Chemical<br>Physics, 2015, 17, 23104-23111.                                                                  | 1.3 | 17        |
| 62 | Development of indazolylpyrimidine derivatives as high-affine EphB4 receptor ligands and potential<br>PET radiotracers. Bioorganic and Medicinal Chemistry, 2015, 23, 6025-6035.                                                                                                                         | 1.4 | 10        |
| 63 | Understanding the comparative molecular field analysis (CoMFA) in terms of molecular quantum similarity and DFT-based reactivity descriptors. Journal of Molecular Modeling, 2015, 21, 156.                                                                                                              | 0.8 | 13        |
| 64 | Optimal graphâ€based and Simplified Molecular Input Line Entry Systemâ€based descriptors for<br>quantitative structure–activity relationship analysis of arylalkylaminoalcohols, arylalkenylamines,<br>and arylalkylamines as σ <sub>1</sub> receptor ligands. Journal of Chemometrics, 2015, 29, 13-20. | 0.7 | 5         |
| 65 | K2P channels in plants and animals. Pflugers Archiv European Journal of Physiology, 2015, 467, 1091-1104.                                                                                                                                                                                                | 1.3 | 17        |
| 66 | Protective mechanisms of adenosine 5′-monophosphate in platelet activation and thrombus formation.<br>Thrombosis and Haemostasis, 2014, 111, 491-507.                                                                                                                                                    | 1.8 | 52        |
| 67 | Inhibition of Platelet Activation and Thrombus Formation by Adenosine and Inosine: Studies on Their Relative Contribution and Molecular Modeling. PLoS ONE, 2014, 9, e112741.                                                                                                                            | 1.1 | 63        |
| 68 | Easy Identification of Residues Involved on Structural Differences Between Nonphosphorylated and<br>Phosphorylated CDK2Cyclin A Complexes Using Twoâ€Đimensional Networks. Molecular Informatics,<br>2014, 33, 151-162.                                                                                 | 1.4 | 1         |
| 69 | Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation. PLoS ONE, 2014, 9, e90699.                                                                                                                                                                                                   | 1.1 | 78        |
| 70 | Minimizing the Risk of Reporting False Aromaticity and Antiaromaticity in Inorganic Heterocycles<br>Following Magnetic Criteria. Inorganic Chemistry, 2014, 53, 3579-3585.                                                                                                                               | 1.9 | 80        |
| 71 | Ultrasound-assisted phase-transfer catalysis method in an aqueous medium to promote the<br>Knoevenagel reaction: Advantages over the conventional and microwave-assisted<br>solvent-free/catalyst-free method. Ultrasonics Sonochemistry, 2014, 21, 1666-1674.                                           | 3.8 | 17        |
| 72 | Docking and quantitative structure–activity relationship of oxadiazole derivates as inhibitors of<br>GSK3 \$\$upbeta \$\$ β. Molecular Diversity, 2014, 18, 149-159.                                                                                                                                     | 2.1 | 23        |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Performance of the MM/GBSA scoring using a binding site hydrogen bond network-based frame selection: the protein kinase case. Physical Chemistry Chemical Physics, 2014, 16, 14047-14058.                                                         | 1.3 | 58        |
| 74 | A coumarinylaldoxime as a specific sensor for Cu2+ and its biological application. Tetrahedron Letters, 2014, 55, 873-876.                                                                                                                        | 0.7 | 18        |
| 75 | Synthesis of coumarin derivatives as fluorescent probes for membrane and cell dynamics studies.<br>European Journal of Medicinal Chemistry, 2014, 76, 79-86.                                                                                      | 2.6 | 5         |
| 76 | Insights into the Interactions between Maleimide Derivates and GSK3Î <sup>2</sup> Combining Molecular Docking and QSAR. PLoS ONE, 2014, 9, e102212.                                                                                               | 1.1 | 28        |
| 77 | Study of the Affinity between the Protein Kinase PKA and Peptide Substrates Derived from Kemptide<br>Using Molecular Dynamics Simulations and MM/GBSA. PLoS ONE, 2014, 9, e109639.                                                                | 1.1 | 17        |
| 78 | Design, synthesis and cellular dynamics studies in membranes of a new coumarin-based "turn-off―<br>fluorescent probe selective for Fe2+. European Journal of Medicinal Chemistry, 2013, 67, 60-63.                                                | 2.6 | 34        |
| 79 | Association of nicotinic acid with a poly(amidoamine) dendrimer studied by molecular dynamics simulations. Journal of Molecular Graphics and Modelling, 2013, 39, 71-78.                                                                          | 1.3 | 27        |
| 80 | In silico Comparison of Antimycobacterial Natural Products with Known Antituberculosis Drugs.<br>Journal of Chemical Information and Modeling, 2013, 53, 649-660.                                                                                 | 2.5 | 13        |
| 81 | SAR and QSAR Modeling of Juvenile Hormone Mimics. , 2013, , 159-188.                                                                                                                                                                              |     | 2         |
| 82 | 3D-QSAR Modeling of Non-peptide Antagonists for the Human Luteinizing Hormone-releasing Hormone<br>Receptor. Medicinal Chemistry, 2013, 9, 560-570.                                                                                               | 0.7 | 2         |
| 83 | A Novel Class of Selective Acetylcholinesterase Inhibitors: Synthesis and Evaluation of<br>(E)-2-(Benzo[d]thiazol-2-yl)-3-heteroarylacrylonitriles. Molecules, 2012, 17, 12072-12085.                                                             | 1.7 | 40        |
| 84 | Synthesis of the Indolo[2,3-a]quinolizidine Ring through the Addition of 2-Siloxyfurans to Imines and Intrinsic Reaction Coordinate Calculations. Synthesis, 2012, 44, 144-150.                                                                   | 1.2 | 12        |
| 85 | Molecular Dynamics of Protein Kinase-Inhibitor Complexes: A Valid Structural Information. Current<br>Pharmaceutical Design, 2012, 18, 2946-2963.                                                                                                  | 0.9 | 20        |
| 86 | The pH sensor of the plant K+-uptake channel KAT1 is built from a sensory cloud rather than from single key amino acids. Biochemical Journal, 2012, 442, 57-63.                                                                                   | 1.7 | 20        |
| 87 | Study of Interaction Energies between the PAMAM Dendrimer and Nonsteroidal Anti-Inflammatory<br>Drug Using a Distributed Computational Strategy and Experimental Analysis by ESI-MS/MS. Journal of<br>Physical Chemistry B, 2012, 116, 2031-2039. | 1.2 | 59        |
| 88 | Synthesis, in silico, inÂvitro, and inÂvivo investigation of 5-[11C]methoxy-substituted sunitinib, a tyrosine<br>kinase inhibitor of VEGFR-2. European Journal of Medicinal Chemistry, 2012, 58, 272-280.                                         | 2.6 | 27        |
| 89 | Models of the pharmacophoric pattern and affinity trend of methyl<br>2-(aminomethyl)-1-phenylcyclopropane-1-carboxylate derivatives as σ <sub>1</sub> ligands. Molecular<br>Simulation, 2012, 38, 227-235.                                        | 0.9 | 4         |
|    |                                                                                                                                                                                                                                                   |     |           |

90 Editorial [Hot Topic: Protein Kinase Inhibitors: Current Strategies and Future Prospects (Executive) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

| #   | Article                                                                                                                                                                                                                                                                                                                                                      | IF            | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|
| 91  | Docking and quantitative structure–activity relationship studies for imidazo[1,2-a]pyrazines as inhibitors of checkpoint kinase-1. Medicinal Chemistry Research, 2012, 21, 1912-1920.                                                                                                                                                                        | 1.1           | 6         |
| 92  | 1â€Benzylâ€1,2,3,4â€Tetrahydroâ€Î²â€Carboline as Channel Blocker of <i>N</i> â€Methylâ€ <scp>d</scp> â€Aspa<br>Receptors. Chemical Biology and Drug Design, 2012, 79, 594-599.                                                                                                                                                                               | artate<br>1.5 | 16        |
| 93  | 1,3-Dipolar cycloaddition of nitrile imines with α,β-unsaturated lactones, thiolactones and lactams:<br>synthesis of ring-fused pyrazoles. Tetrahedron, 2012, 68, 3319-3328.                                                                                                                                                                                 | 1.0           | 34        |
| 94  | Study of differences in the VEGFR2 inhibitory activities between semaxanib and SU5205 using 3D-QSAR,<br>docking, and molecular dynamics simulations. Journal of Molecular Graphics and Modelling, 2012, 32,<br>39-48.                                                                                                                                        | 1.3           | 44        |
| 95  | Investigation of the Differences in Activity between Hydroxycycloalkyl N1 Substituted Pyrazole<br>Derivatives As Inhibitors of B-Raf Kinase by Using Docking, Molecular Dynamics, QM/MM, and<br>Fragment-Based <i>De Novo</i> Design: Study of Binding Mode of Diastereomer Compounds. Journal of<br>Chemical Information and Modeling, 2011, 51, 2920-2931. | 2.5           | 18        |
| 96  | Binding Studies and Quantitative Structure–Activity Relationship of 3â€Aminoâ€1 <i>H</i> â€Indazoles as<br>Inhibitors of GSK3β. Chemical Biology and Drug Design, 2011, 78, 631-641.                                                                                                                                                                         | 1.5           | 18        |
| 97  | Identification of a potent and selective $If 1$ receptor agonist potentiating NGF-induced neurite outgrowth in PC12 cells. Bioorganic and Medicinal Chemistry, 2011, 19, 6210-6224.                                                                                                                                                                          | 1.4           | 45        |
| 98  | Insights into the structure of urea-like compounds as inhibitors of the juvenile hormone epoxide<br>hydrolase (JHEH) of the tobacco hornworm Manduca sexta: Analysis of the binding modes and<br>structure–activity relationships of the inhibitors by docking and CoMFA calculations. Chemosphere,<br>2011, 82, 1604-1613.                                  | 4.2           | 22        |
| 99  | Docking and quantitative structure–activity relationship studies for<br>3-fluoro-4-(pyrrolo[2,1-f][1,2,4]triazin-4-yloxy)aniline,<br>3-fluoro-4-(1H-pyrrolo[2,3-b]pyridin-4-yloxy)aniline, and 4-(4-amino-2-fluorophenoxy)-2-pyridinylamine<br>derivatives as c-Met kinase inhibitors. Journal of Computer-Aided Molecular Design, 2011, 25, 349-369.        | 1.3           | 27        |
| 100 | Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM). Molecular Diversity, 2011, 15, 269-289.                                                                                                                                          | 2.1           | 81        |
| 101 | 1,3â€Dipolar Cycloaddition of Nitrile Imines with Cyclic αâ€Î²â€Unsaturated Ketones: A Regiochemical Route to<br>Ringâ€Fused Pyrazoles. European Journal of Organic Chemistry, 2011, 2011, 4806-4813.                                                                                                                                                        | 1.2           | 11        |
| 102 | 3D-QSAR (CoMFA and CoMSIA) and pharmacophore (GALAHAD) studies on the differential inhibition of aldose reductase by flavonoid compounds. Journal of Molecular Graphics and Modelling, 2010, 29, 363-371.                                                                                                                                                    | 1.3           | 61        |
| 103 | Quantitative Structure–Activity Relationship of Organosulphur Compounds as Soybean<br>15â€Lipoxygenase Inhibitors Using CoMFA and CoMSIA. Chemical Biology and Drug Design, 2010, 76, 511-517.                                                                                                                                                               | 1.5           | 7         |
| 104 | Computational Study of the Interactions between Guanine Derivatives and Cyclin-Dependent Kinase 2 (CDK2) by CoMFA and QM/MM. Journal of Chemical Information and Modeling, 2010, 50, 110-122.                                                                                                                                                                | 2.5           | 22        |
| 105 | Computational Study on the Interaction of N1 Substituted Pyrazole Derivatives with B-Raf Kinase: An<br>Unusual Water Wire Hydrogen-Bond Network and Novel Interactions at the Entrance of the Active<br>Site. Journal of Chemical Information and Modeling, 2010, 50, 1101-1112.                                                                             | 2.5           | 33        |
| 106 | Graphical Representations of Protein Sequences for Alignment-Free Comparative and Predictive<br>Studies. Recognition of Protease Inhibition Pattern from H-Depleted Molecular Graph Representation<br>of Protease Sequences. Current Bioinformatics, 2010, 5, 241-252.                                                                                       | 0.7           | 2         |
| 107 | Docking and quantitative structure–activity relationship studies for sulfonyl hydrazides as<br>inhibitors of cytosolic human branched-chain amino acid aminotransferase. Molecular Diversity,<br>2009, 13, 493-500.                                                                                                                                          | 2.1           | 19        |
| 108 | Inclusion complexes containing poly(É>-caprolactone)diol and cyclodextrins. Experimental and theoretical studies. Polymer, 2009, 50, 2926-2932.                                                                                                                                                                                                              | 1.8           | 7         |

| #   | Article                                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | A computational ONIOM model for the description of the H-bond interactions between NU2058 analogues and CDK2 active site. Chemical Physics Letters, 2009, 479, 149-155.                                                                                                                                       | 1.2 | 16        |
| 110 | Insights into the Structural Basis of N2 and O6 Substituted Guanine Derivatives as Cyclin-Dependent<br>Kinase 2 (CDK2) Inhibitors: Prediction of the Binding Modes and Potency of the inhibitors by Docking<br>and ONIOM Calculations. Journal of Chemical Information and Modeling, 2009, 49, 886-899.       | 2.5 | 57        |
| 111 | Classification of conformational stability of protein mutants from 3D pseudoâ€folding graph representation of protein sequences using support vector machines. Proteins: Structure, Function and Bioinformatics, 2008, 70, 167-175.                                                                           | 1.5 | 20        |
| 112 | Modeling of the Inhibition of the Intermediate onductance Ca <sup>2+</sup> â€Activated K <sup>+</sup><br>Channel (IKCa1) by Some Triarylmethanes Using Quantum Chemical Properties Derived From <i>Ab<br/>Initio</i> Calculations. QSAR and Combinatorial Science, 2008, 27, 866-875.                         | 1.5 | 4         |
| 113 | 2D Autocorrelation, CoMFA, and CoMSIA modeling of protein tyrosine kinases' inhibition by substituted pyrido[2,3-d]pyrimidine derivatives. Bioorganic and Medicinal Chemistry, 2008, 16, 810-821.                                                                                                             | 1.4 | 29        |
| 114 | A CoMSIA study on the adenosine kinase inhibition of pyrrolo[2,3-d]pyrimidine nucleoside analogues.<br>Bioorganic and Medicinal Chemistry, 2008, 16, 5103-5108.                                                                                                                                               | 1.4 | 5         |
| 115 | Structural requirements of pyrido[2,3-d]pyrimidin-7-one as CDK4/D inhibitors: 2D autocorrelation, CoMFA and CoMSIA analyses. Bioorganic and Medicinal Chemistry, 2008, 16, 6103-6115.                                                                                                                         | 1.4 | 32        |
| 116 | Proteochemometric Modeling of the Inhibition Complexes of Matrix Metalloproteinases with<br><i>N</i> â€Hydroxyâ€2â€{(Phenylsulfonyl)Amino]Acetamide Derivatives Using Topological Autocorrelation<br>Interaction Matrix and Model Ensemble Averaging. Chemical Biology and Drug Design, 2008, 72, 65-78.      | 1.5 | 5         |
| 117 | Docking and Quantitative Structure–Activity Relationship Studies for the Bisphenylbenzimidazole<br>Family of Nonâ€Nucleoside Inhibitors of HIVâ€1 Reverse Transcriptase. Chemical Biology and Drug Design,<br>2008, 72, 360-369.                                                                              | 1.5 | 30        |
| 118 | Study of the Interaction between Progesterone and β-Cyclodextrin by Electrochemical Techniques and Steered Molecular Dynamics. Journal of Physical Chemistry B, 2008, 112, 10194-10201.                                                                                                                       | 1.2 | 30        |
| 119 | Proteometric modelling of protein conformational stability using amino acid sequence<br>autocorrelation vectors and genetic algorithm-optimised support vector machines. Molecular<br>Simulation, 2008, 34, 857-872.                                                                                          | 0.9 | 3         |
| 120 | Artificial Neural Networks from MATLAB® in Medicinal Chemistry. Bayesian-Regularized<br>Genetic Neural Networks (BRGNN): Application to the Prediction of the Antagonistic Activity Against<br>Human Platelet Thrombin Receptor (PAR-1). Current Topics in Medicinal Chemistry, 2008, 8, 1580-1605.           | 1.0 | 72        |
| 121 | Classification of conformational stability of protein mutants from 2D graph representation of protein sequences using support vector machines. Molecular Simulation, 2007, 33, 889-896.                                                                                                                       | 0.9 | 4         |
| 122 | Comparative modeling of the conformational stability of chymotrypsin inhibitor 2 protein mutants using amino acid sequence autocorrelation (AASA) and amino acid 3D autocorrelation (AA3DA) vectors and ensembles of Bayesian-regularized genetic neural networks. Molecular Simulation, 2007, 33, 1045-1056. | 0.9 | 4         |
| 123 | Analysis of protegrin structure–activity relationships: the structural characteristics important for antimicrobial activity using smoothed amino acid sequence descriptors. Molecular Simulation, 2007, 33, 689-702.                                                                                          | 0.9 | 7         |
| 124 | Quantitative Structure–Activity Relationship of Rubiscolin Analogues as δ Opioid Peptides Using<br>Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis<br>(CoMSIA). Journal of Agricultural and Food Chemistry, 2007, 55, 8101-8104.                           | 2.4 | 36        |
| 125 | QSAR analysis for heterocyclic antifungals. Bioorganic and Medicinal Chemistry, 2007, 15, 2680-2689.                                                                                                                                                                                                          | 1.4 | 42        |
| 126 | QSAR modeling of matrix metalloproteinase inhibition by N-hydroxy-α-phenylsulfonylacetamide derivatives. Bioorganic and Medicinal Chemistry, 2007, 15, 6298-6310.                                                                                                                                             | 1.4 | 40        |

| #   | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Proteometric study of ghrelin receptor function variations upon mutations using amino acid<br>sequence autocorrelation vectors and genetic algorithm-based least square support vector<br>machines. Journal of Molecular Graphics and Modelling, 2007, 26, 166-178. | 1.3 | 53        |
| 128 | Protein radial distribution function (P-RDF) and Bayesian-Regularized Genetic Neural Networks for<br>modeling protein conformational stability: Chymotrypsin inhibitor 2 mutants. Journal of Molecular<br>Graphics and Modelling, 2007, 26, 748-759.                | 1.3 | 19        |
| 129 | Modeling of the Inhibition Constant (Ki) of Some Cruzain Ketone-Based Inhibitors Using 2D Spatial<br>Autocorrelation Vectors and Data-Diverse Ensembles of Bayesian-Regularized Genetic Neural<br>Networks. QSAR and Combinatorial Science, 2007, 26, 27-40.        | 1.5 | 33        |
| 130 | Amino acid sequence autocorrelation vectors and bayesian-regularized genetic neural networks for<br>modeling protein conformational stability: Gene V protein mutants. Proteins: Structure, Function and<br>Bioinformatics, 2007, 67, 834-852.                      | 1.5 | 46        |
| 131 | Quantitative Structure?Activity Relationship Modeling of Growth Hormone Secretagogues Agonist<br>Activity of some Tetrahydroisoquinoline 1-Carboxamides. Chemical Biology and Drug Design, 2007, 69,<br>48-55.                                                      | 1.5 | 7         |
| 132 | QSAR models for predicting the activity of non-peptide luteinizing hormone-releasing hormone (LHRH)<br>antagonists derived from erythromycin A using quantum chemical properties. Journal of Molecular<br>Modeling, 2007, 13, 465-476.                              | 0.8 | 17        |
| 133 | Modeling of acetylcholinesterase inhibition by tacrine analogues using Bayesian-regularized Genetic<br>Neural Networks and ensemble averaging. Journal of Enzyme Inhibition and Medicinal Chemistry, 2006,<br>21, 647-661.                                          | 2.5 | 23        |
| 134 | 2D Autocorrelation Modelling of the Inhibitory Activity of Cytokinin-Derived Cyclin-Dependent Kinase<br>Inhibitors. Bulletin of Mathematical Biology, 2006, 68, 735-751.                                                                                            | 0.9 | 28        |
| 135 | Amino Acid Sequence Autocorrelation Vectors and Ensembles of Bayesian-Regularized Genetic Neural<br>Networks for Prediction of Conformational Stability of Human Lysozyme Mutants. Journal of<br>Chemical Information and Modeling, 2006, 46, 1255-1268.            | 2.5 | 57        |
| 136 | Ensembles of Bayesian-regularized Genetic Neural Networks for Modeling of Acetylcholinesterase<br>Inhibition by Huprines. Chemical Biology and Drug Design, 2006, 68, 201-212.                                                                                      | 1.5 | 22        |
| 137 | QSAR for non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorganic and Medicinal Chemistry, 2006, 14, 5876-5889.                                                                                                                                         | 1.4 | 80        |
| 138 | Modeling of farnesyltransferase inhibition by some thiol and non-thiol peptidomimetic inhibitors<br>using genetic neural networks and RDF approaches. Bioorganic and Medicinal Chemistry, 2006, 14,<br>200-213.                                                     | 1.4 | 62        |
| 139 | Modeling of activity of cyclic urea HIV-1 protease inhibitors using regularized-artificial neural networks. Bioorganic and Medicinal Chemistry, 2006, 14, 280-294.                                                                                                  | 1.4 | 60        |
| 140 | 2D Autocorrelation modeling of the negative inotropic activity of calcium entry blockers using<br>Bayesian-regularized genetic neural networks. Bioorganic and Medicinal Chemistry, 2006, 14, 3330-3340.                                                            | 1.4 | 29        |
| 141 | Linear and nonlinear QSAR study of N-hydroxy-2-[(phenylsulfonyl)amino]acetamide derivatives as matrix metalloproteinase inhibitors. Bioorganic and Medicinal Chemistry, 2006, 14, 4137-4150.                                                                        | 1.4 | 63        |
| 142 | Bayesian-regularized genetic neural networks applied to the modeling of non-peptide antagonists for<br>the human luteinizing hormone-releasing hormone receptor. Journal of Molecular Graphics and<br>Modelling, 2006, 25, 410-422.                                 | 1.3 | 35        |
| 143 | Improved pharmacological properties for superoxide dismutase modified with mannan. Biotechnology and Applied Biochemistry, 2006, 44, 159.                                                                                                                           | 1.4 | 6         |
| 144 | Linear and nonlinear modeling of antifungal activity of some heterocyclic ring derivatives using<br>multiple linear regression and Bayesian-regularized neural networks. Journal of Molecular Modeling,<br>2006, 12, 168-181.                                       | 0.8 | 73        |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Quantitative structure–activity relationship to predict differential inhibition of aldose reductase by flavonoid compounds. Bioorganic and Medicinal Chemistry, 2005, 13, 3269-3277.                                                                             | 1.4 | 87        |
| 146 | Supramolecular assembly of β-cyclodextrin-modified gold nanoparticles and Cu, Zn-superoxide dismutase on catalase. Journal of Molecular Catalysis B: Enzymatic, 2005, 35, 79-85.                                                                                 | 1.8 | 41        |
| 147 | Improved Anti-Inflammatory and Pharmacokinetic Properties for Superoxide Dismutase by Chemical Glycosidation with Carboxymethylchitin. Macromolecular Bioscience, 2005, 5, 118-123.                                                                              | 2.1 | 22        |
| 148 | Genetic neural network modeling of the selective inhibition of the intermediate-conductance<br>Ca2+-activated K+ channel by some triarylmethanes using topological charge indexes descriptors.<br>Journal of Computer-Aided Molecular Design, 2005, 19, 771-789. | 1.3 | 15        |
| 149 | Improved Pharmacological Properties for Superoxide Dismutase Modified with<br>Carboxymethycellulose. Journal of Bioactive and Compatible Polymers, 2005, 20, 557-570.                                                                                            | 0.8 | 8         |
| 150 | 2D Autocorrelation modeling of the activity of trihalobenzocycloheptapyridine analogues as farnesyl protein transferase inhibitors. Molecular Simulation, 2005, 31, 575-584.                                                                                     | 0.9 | 29        |
| 151 | Modeling of Cyclin-Dependent Kinase Inhibition by 1H-Pyrazolo[3,4-d]Pyrimidine Derivatives Using<br>Artificial Neural Network Ensembles. Journal of Chemical Information and Modeling, 2005, 45,<br>1884-1895.                                                   | 2.5 | 54        |
| 152 | Effects of β-cyclodextrin-dextran polymer on stability properties of trypsin. Biotechnology and Bioengineering, 2003, 83, 743-747.                                                                                                                               | 1.7 | 18        |
| 153 | Immobilization of Adamantane-Modified Cytochromecat Electrode Surfaces through Supramolecular<br>Interactions. Langmuir, 2002, 18, 5051-5054.                                                                                                                    | 1.6 | 88        |
| 154 | <strong>Free energy theoretical calculations of PKA–Kemptide complex formation, and effect of mutation of Kemptide arginines to homoarginines.</strong> . , 0, , .                                                                                               |     | 0         |