James C Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7267612/publications.pdf Version: 2024-02-01

IMMES C LIAO

#	Article	IF	CITATIONS
1	Fish Exploiting Vortices Decrease Muscle Activity. Science, 2003, 302, 1566-1569.	12.6	698
2	A review of fish swimming mechanics and behaviour in altered flows. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1973-1993.	4.0	566
3	The Kalrmaln gait: novel body kinematics of rainbow trout swimming in a vortex street. Journal of Experimental Biology, 2003, 206, 1059-1073.	1.7	396
4	THE IPOS FRAMEWORK: LINKING FISH SWIMMING PERFORMANCE IN ALTERED FLOWS FROM LABORATORY EXPERIMENTS TO RIVERS. River Research and Applications, 2012, 28, 429-443.	1.7	139
5	Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Kalimaln gait. Journal of Experimental Biology, 2004, 207, 3495-3506.	1.7	134
6	Computational analysis of vortex dynamics and performance enhancement due to body–fin andÂfin–fin interactions in fish-like locomotion. Journal of Fluid Mechanics, 2017, 829, 65-88.	3.4	130
7	Shared versus Specialized Glycinergic Spinal Interneurons in Axial Motor Circuits of Larval Zebrafish. Journal of Neuroscience, 2008, 28, 12982-12992.	3.6	128
8	The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow. Journal of Experimental Biology, 2006, 209, 4077-4090.	1.7	118
9	Zebrafish Larvae Exhibit Rheotaxis and Can Escape a Continuous Suction Source Using Their Lateral Line. PLoS ONE, 2012, 7, e36661.	2.5	90
10	Rainbow trout consume less oxygen in turbulence: the energetics of swimming behaviors at different speeds. Journal of Experimental Biology, 2011, 214, 1428-1436.	1.7	86
11	Synaptic Ribbons Require Ribeye for Electron Density, Proper Synaptic Localization, and Recruitment of Calcium Channels. Cell Reports, 2016, 15, 2784-2795.	6.4	60
12	Accelerating fishes increase propulsive efficiency by modulating vortex ring geometry. Proceedings of the United States of America, 2017, 114, 13828-13833.	7.1	55
13	Physiology of afferent neurons in larval zebrafish provides a functional framework for lateral line somatotopy. Journal of Neurophysiology, 2012, 107, 2615-2623.	1.8	52
14	Lateral Line Layout Correlates with the Differential Hydrodynamic Pressure on Swimming Fish. Physical Review Letters, 2015, 114, 018102.	7.8	52
15	Swimming in needlefish (Belonidae): anguilliform locomotion with fins. Journal of Experimental Biology, 2002, 205, 2875-2884.	1.7	45
16	Organization and physiology of posterior lateral line afferent neurons in larval zebrafish. Biology Letters, 2010, 6, 402-405.	2.3	43
17	Convergence of undulatory swimming kinematics across a diversity of fishes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	38
18	Afferent and motoneuron activity in response to single neuromast stimulation in the posterior lateral line of larval zebrafish. Journal of Neurophysiology, 2014, 112, 1329-1339.	1.8	36

James C Liao

#	Article	IF	CITATIONS
19	Efferent modulation of spontaneous lateral line activity during and after zebrafish motor commands. Journal of Neurophysiology, 2019, 122, 2438-2448.	1.8	35
20	An Algorithmic Approach to Natural Behavior. Current Biology, 2020, 30, R663-R675.	3.9	35
21	Heterogeneity and dynamics of lateral line afferent innervation during development in zebrafish (<i>Danio rerio</i>). Journal of Comparative Neurology, 2012, 520, 1376-1386.	1.6	33
22	Swimming in needlefish (Belonidae): anguilliform locomotion with fins. Journal of Experimental Biology, 2002, 205, 2875-84.	1.7	32
23	Refuging rainbow trout selectively exploit flows behind tandem cylinders. Journal of Experimental Biology, 2016, 219, 2182-2191.	1.7	28
24	A kinematic model of Kármán gaiting in rainbow trout. Journal of Experimental Biology, 2013, 216, 4666-77.	1.7	25
25	A numerical study of fish adaption behaviors in complex environments with a deep reinforcement learning and immersed boundary–lattice Boltzmann method. Scientific Reports, 2021, 11, 1691.	3.3	25
26	The effect of flow speed and body size on Kármán gait kinematics in rainbow trout. Journal of Experimental Biology, 2013, 216, 3442-9.	1.7	21
27	Frequency response properties of primary afferent neurons in the posterior lateral line system of larval zebrafish. Journal of Neurophysiology, 2015, 113, 657-668.	1.8	18
28	Fish Swimming in a Kármán Vortex Street: Kinematics, Sensory Biology and Energetics. Marine Technology Society Journal, 2017, 51, 48-55.	0.4	14
29	The Hydrodynamics of Flow Stimuli. Springer Handbook of Auditory Research, 2013, , 73-98.	0.7	12
30	Behavior, Electrophysiology, and Robotics Experiments to Study Lateral Line Sensing in Fishes. Integrative and Comparative Biology, 2018, 58, 874-883.	2.0	12
31	A non-toxic dose of cobalt chloride blocks hair cells of the zebrafish lateral line. Hearing Research, 2017, 350, 17-21.	2.0	10
32	Head width influences flow sensing by the lateral line canal system in fishes. Journal of Experimental Biology, 2018, 221, .	1.7	10
33	Oxygen consumption of drift-feeding rainbow trout: the energetic tradeoff between locomotion and feeding in flow. Journal of Experimental Biology, 2020, 223, .	1.7	10
34	Corollary discharge enables proprioception from lateral line sensory feedback. PLoS Biology, 2021, 19, e3001420.	5.6	9
35	The Philosophy of Outliers: Reintegrating Rare Events Into Biological Science. Integrative and Comparative Biology, 2022, 61, 2191-2198.	2.0	6
36	Fish-inspired segment models for undulatory steady swimming. Bioinspiration and Biomimetics, 2022, 17. 046007.	2.9	5

JAMES C LIAO

#	Article	IF	CITATIONS
37	Fish swimming efficiency. Current Biology, 2022, 32, R666-R671.	3.9	5
38	Evolutionary convergence of a neural mechanism in the cavefish lateral line system. ELife, 0, 11, .	6.0	5
39	Body Caudal Undulation Measured by Soft Sensors and Emulated by Soft Artificial Muscles. Integrative and Comparative Biology, 2021, 61, 1955-1965.	2.0	4
40	Activity of Posterior Lateral Line Afferent Neurons during Swimming in Zebrafish. Journal of Visualized Experiments, 2021, , .	0.3	3