Naoki Osada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7267057/publications.pdf

Version: 2024-02-01

236925 214800 2,701 87 25 47 h-index citations g-index papers 96 96 96 4177 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mitochondrial–Nuclear Interactions and Accelerated Compensatory Evolution: Evidence from the Primate Cytochrome c Oxidase Complex. Molecular Biology and Evolution, 2012, 29, 337-346.	8.9	203
2	The Genome Landscape of the African Green Monkey Kidney-Derived Vero Cell Line. DNA Research, 2014, 21, 673-683.	3.4	198
3	Extensive expansion and diversification of the chemokine gene family in zebrafish: Identification of a novel chemokine subfamily CX. BMC Genomics, 2008, 9, 222.	2.8	163
4	The evolution of mammalian chemokine genes. Cytokine and Growth Factor Reviews, 2010, 21, 253-262.	7.2	128
5	Weak Selection and Protein Evolution. Genetics, 2012, 192, 15-31.	2.9	124
6	A key metabolic gene for recurrent freshwater colonization and radiation in fishes. Science, 2019, 364, 886-889.	12.6	109
7	A family tree of vertebrate chemokine receptors for a unified nomenclature. Developmental and Comparative Immunology, 2011, 35, 705-715.	2.3	107
8	Systematic classification of vertebrate chemokines based on conserved synteny and evolutionary history. Genes To Cells, 2013, 18, 1-16.	1.2	107
9	Rate of Evolution in Brain-Expressed Genes in Humans and Other Primates. PLoS Biology, 2006, 5, e13.	5 . 6	93
10	Inferring the Mode of Speciation From Genomic Data. Genetics, 2005, 169, 259-264.	2.9	75
11	Whole-genome sequencing and analysis of the Malaysian cynomolgus macaque (Macaca fascicularis) genome. Genome Biology, 2012, 13, R58.	9.6	72
12	Duplication and Gene Conversion in the Drosophila melanogaster Genome. PLoS Genetics, 2008, 4, e1000305.	3.5	60
13	<i>Cis</i> - and <i>Trans</i> -regulatory Effects on Gene Expression in a Natural Population of <i>Drosophila melanogaster</i> - Genetics, 2017, 206, 2139-2148.	2.9	57
14	Genetic Variants of (i) CYP3A4 (i) and (i) CYP3A5 (i) in Cynomolgus and Rhesus Macaques. Drug Metabolism and Disposition, 2010, 38, 209-214.	3.3	54
15	Prdm9 Polymorphism Unveils Mouse Evolutionary Tracks. DNA Research, 2014, 21, 315-326.	3.4	54
16	Ancient genome-wide admixture extends beyond the current hybrid zone between Macaca fascicularis and M. mulatta. Molecular Ecology, 2010, 19, 2884-2895.	3.9	53
17	Whole-Genome Sequencing of Tibetan Macaque (Macaca thibetana) Provides New Insight into the Macaque Evolutionary History. Molecular Biology and Evolution, 2014, 31, 1475-1489.	8.9	49
18	Large-scale analysis of Macaca fascicularis transcripts and inference of genetic divergence between M. fascicularis and M. mulatta. BMC Genomics, 2008, 9, 90.	2.8	40

#	Article	IF	Citations
19	Footprints of natural and artificial selection for photoperiod pathway genes in <i>Oryza</i> Journal, 2012, 70, 769-782.	5 . 7	40
20	Ancient hybridization and admixture in macaques (genus Macaca) inferred from whole genome sequences. Molecular Phylogenetics and Evolution, 2018, 127, 376-386.	2.7	38
21	Whole-Genome Sequencing of Six Mauritian Cynomolgus Macaques (Macaca fascicularis) Reveals a Genome-Wide Pattern of Polymorphisms under Extreme Population Bottleneck. Genome Biology and Evolution, 2015, 7, 821-830.	2.5	37
22	Complex patterns of <i>cis</i> â€regulatory polymorphisms in <i>ebony</i> underlie standing pigmentation variation in <i>Drosophila melanogaster</i> . Molecular Ecology, 2015, 24, 5829-5841.	3.9	32
23	Model-Based Verification of Hypotheses on the Origin of Modern Japanese Revisited by Bayesian Inference Based on Genome-Wide SNP Data. Molecular Biology and Evolution, 2015, 32, 1533-1543.	8.9	32
24	IL-10 Is a Negative Regulatory Factor of CAWS-Vasculitis in CBA/J Mice as Assessed by Comparison with Bruton's Tyrosine Kinase-Deficient CBA/N Mice. Journal of Immunology, 2009, 183, 3417-3424.	0.8	31
25	Genetic diversity in humans and non-human primates and its evolutionary consequences. Genes and Genetic Systems, 2015, 90, 133-145.	0.7	27
26	A Transposable Element-Mediated Gene Divergence that Directly Produces a Novel Type Bovine Bcnt Protein Including the Endonuclease Domain of RTE-1. Molecular Biology and Evolution, 2003, 20, 1556-1563.	8.9	26
27	Dysfunctional missense variant of <i>OAT10/SLC22A13</i> decreases gout risk and serum uric acid levels. Annals of the Rheumatic Diseases, 2020, 79, 164-166.	0.9	26
28	House mouse Mus musculus dispersal in East Eurasia inferred from 98 newly determined complete mitochondrial genome sequences. Heredity, 2021, 126, 132-147.	2.6	26
29	Genomic Inferences of the cis-Regulatory Nucleotide Polymorphisms Underlying Gene Expression Differences between Drosophila melanogaster Mating Races. Molecular Biology and Evolution, 2006, 23, 1585-1591.	8.9	25
30	Identification of Characteristic Genomic Markers in Human Hepatoma HuH-7 and Huh7.5.1-8 Cell Lines. Frontiers in Genetics, 2020, 11, 546106.	2.3	24
31	Population Genetics in Nonmodel Organisms: II. Natural Selection in Marginal Habitats Revealed by Deep Sequencing on Dual Platforms. Molecular Biology and Evolution, 2011, 28, 2833-2842.	8.9	23
32	Ecological genomics in Xanthomonas: the nature of genetic adaptation with homologous recombination and host shifts. BMC Genomics, 2015, 16, 188.	2.8	23
33	Substitution Rate and Structural Divergence of 5′UTR Evolution: Comparative Analysis Between Human and Cynomolgus Monkey cDNAs. Molecular Biology and Evolution, 2005, 22, 1976-1982.	8.9	21
34	Expressed sequence tags from cynomolgus monkey (<i>Macaca fascicularis</i>) liver: A systematic identification of drugâ€metabolizing enzymes. FEBS Letters, 2008, 582, 351-358.	2.8	21
35	Novel endogenous simian retroviral integrations in Vero cells: implications for quality control of a human vaccine cell substrate. Scientific Reports, 2018, 8, 644.	3.3	21
36	Dopamine Receptor Genes and Evolutionary Differentiation in the Domestication of Fighting Cocks and Long-Crowing Chickens. PLoS ONE, 2014, 9, e101778.	2.5	21

#	Article	IF	Citations
37	Evolutionary rates of commonly used nuclear and organelle markers of Arabidopsis relatives (Brassicaceae). Gene, 2012, 499, 194-201.	2.2	20
38	Assignment of 118 novel cDNAs of cynomolgus monkey brain to human chromosomes. Gene, 2001, 275, 31-37.	2.2	19
39	Search for Genes Positively Selected during Primate Evolution by 5′-End-Sequence Screening of Cynomolgus Monkey cDNAs. Genomics, 2002, 79, 657-662.	2.9	19
40	Population genetics of non-genetic traits: Evolutionary roles of stochasticity in gene expression. Gene, 2015, 562, 16-21.	2.2	19
41	Multilocus analysis of genetic divergence between outcrossing <i>Arabidopsis</i> species: evidence of genomeâ€wide admixture. New Phytologist, 2010, 188, 488-500.	7.3	18
42	Analysis of 5'-End Sequences of Chimpanzee cDNAs. Genome Research, 2003, 13, 1022-1026.	5.5	17
43	Evolution of Sexual Isolation during Secondary Contact: Genotypic versus Phenotypic Changes in Laboratory Populations. American Naturalist, 2005, 165, 420-428.	2.1	17
44	CpG site degeneration triggered by the loss of functional constraint created a highly polymorphic macaque drug-metabolizing gene, CYP1A2. BMC Evolutionary Biology, 2011, 11, 283.	3.2	17
45	Adaptive divergence with gene flow in incipient speciation of <i><scp>M</scp>iscanthus floridulus</i> /i>/si>sinensis/i> complex (<scp>P</scp> oaceae). Plant Journal, 2014, 80, 834-847.	5.7	17
46	Cynomolgus monkey testicular cDNAs for discovery of novel human genes in the human genome sequence. BMC Genomics, 2002, 3, 36.	2.8	16
47	Finding the Factors of Reduced Genetic Diversity on X Chromosomes of <i>Macaca fascicularis</i> Male-Driven Evolution, Demography, and Natural Selection. Genetics, 2013, 195, 1027-1035.	2.9	16
48	A Tandem Gene Duplication Followed by Recruitment of a Retrotransposon Created the Paralogous Bucentaur Gene (bcntp97) in the Ancestral Ruminant. Molecular Biology and Evolution, 2006, 23, 798-806.	8.9	15
49	Insights into <i>Mus musculus</i> Population Structure across Eurasia Revealed by Whole-Genome Analysis. Genome Biology and Evolution, 2022, 14, .	2.5	15
50	Molecular cloning, genomic characterization and over-expression of a novel gene, XRRA1, identified from human colorectal cancer cell HCT116Clone2_XRR and macaque testis. BMC Genomics, 2003, 4, 32.	2.8	14
51	Testing sex-biased admixture origin of macaque species using autosomal and X-chromosomal genomic sequences. Genome Biology and Evolution, 2021, 13, .	2.5	14
52	Quantifying dominance and deleterious effect on human disease genes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 841-846.	7.1	13
53	Comparative characterization of flavivirus production in two cell lines: Human hepatoma-derived Huh7.5.1-8 and African green monkey kidney-derived Vero. PLoS ONE, 2020, 15, e0232274.	2.5	13
54	Aberrant termination of reproduction-related TMEM30C transcripts in the hominoids. Gene, 2007, 392, 151-156.	2.2	12

#	Article	IF	Citations
55	Achiasmy and sex chromosome evolution. Ecological Genetics and Genomics, 2019, 13, 100046.	0.5	12
56	Collection of Macaca fascicularis cDNAs derived from bone marrow, kidney, liver, pancreas, spleen, and thymus. BMC Research Notes, 2009, 2, 199.	1.4	11
57	A Generalized Linear Model for Decomposing <i>Cis</i> -regulatory, Parent-of-Origin, and Maternal Effects on Allele-Specific Gene Expression. G3: Genes, Genomes, Genetics, 2017, 7, 2227-2234.	1.8	11
58	A New Approach to Drug Repurposing with Two-Stage Prediction, Machine Learning, and Unsupervised Clustering of Gene Expression. OMICS A Journal of Integrative Biology, 2022, 26, 339-347.	2.0	11
59	Prediction of unidentified human genes on the basis of sequence similarity to novel cDNAs from cynomolgus monkey brain. Genome Biology, 2001, 3, research0006.1.	9.6	10
60	Development of an integrative database with 499 novel microsatellite markers for Macaca fascicularis. BMC Genetics, 2009, 10, 24.	2.7	10
61	CYP2D44 polymorphisms in cynomolgus and rhesus macaques. Molecular Biology Reports, 2015, 42, 1149-1155.	2.3	10
62	Demographic History of the Brown Bear (<i>Ursus arctos</i>) on Hokkaido Island, Japan, Based on Whole-Genomic Sequence Analysis. Genome Biology and Evolution, 2021, 13, .	2.5	10
63	Characterization of MHC class I transcripts of a Malaysian cynomolgus macaque by high-throughput pyrosequencing and EST libraries. Immunogenetics, 2011, 63, 703-713.	2.4	9
64	Inference of Expression-Dependent Negative Selection Based on Polymorphism and Divergence in the Human Genome. Molecular Biology and Evolution, 2007, 24, 1622-1626.	8.9	8
65	Positive and negative regulation of adenovirus infection by CAR-like soluble protein, CLSP. Gene Therapy, 2007, 14, 1199-1207.	4.5	8
66	Exploring models of human migration to the Japanese archipelago using genome-wide genetic data. Anthropological Science, 2021, 129, 45-58.	0.4	7
67	Identification of a Novel CXCL1-Like Chemokine Gene in Macaques and Its Inactivation in Hominids. Journal of Interferon and Cytokine Research, 2007, 27, 32-37.	1.2	5
68	Multiple duplication of the bucentaur gene family, which recruits the APE-like domain of retrotransposon: Identification of a novel homolog and distinct cellular expression. Gene, 2009, 435, 88-95.	2.2	5
69	Novel DNA sequence isolated from blood donors with high transaminase levels. Hepatology Research, 2011, 41, 971-981.	3.4	5
70	Whole-Genome Sequencing of Vero E6 (VERO C1008) and Comparative Analysis of Four Vero Cell Sublines. Frontiers in Genetics, 2022, 13, 801382.	2.3	5
71	Phylogenetic Inconsistency Caused by Ancient Sex-Biased Gene Migration. PLoS ONE, 2011, 6, e25549.	2.5	4
72	Extracting population genetics information from a diploid genome sequence. Frontiers in Ecology and Evolution, $0, 2, .$	2.2	4

#	Article	IF	CITATIONS
73	Sequence analysis, gene expression, and chromosomal assignment of mouse Borg4 gene and its human orthologue. Journal of Human Genetics, 2000, 45, 374-377.	2.3	3
74	Development of genotyping method for functionally relevant variants of cytochromes P450 in cynomolgus macaques. Journal of Veterinary Pharmacology and Therapeutics, 2018, 41, e30-e34.	1.3	3
75	Comprehensive phylogenomic analysis reveals a novel cluster of simian endogenous retroviral sequences in Colobinae monkeys. American Journal of Primatology, 2018, 80, e22882.	1.7	3
76	Genetic diversity and population structure of Glossina morsitans morsitans in the active foci of human African trypanosomiasis in Zambia and Malawi. PLoS Neglected Tropical Diseases, 2019, 13, e0007568.	3.0	3
77	An Individual-Based Diploid Model Predicts Limited Conditions Under Which Stochastic Gene Expression Becomes Advantageous. Frontiers in Genetics, 2015, 6, 336.	2.3	1
78	Compensatory Evolution. , 2016, , 329-333.		1
79	Phylogeographic study using nuclear genome sequences of <i>Asip</i> to infer the origins of ventral fur color variation in the house mouse <i>Mus musculus</i> . Genes and Genetic Systems, 2021, 96, 271-284.	0.7	1
80	An Overview of Transcriptome Studies in Non-Human Primates. Primatology Monographs, 2012, , 9-22.	0.8	0
81	Genome-scale approaches for studying human and non-human primate evolution. Genes and Genetic Systems, 2015, 90, 121-122.	0.7	0
82	Translational Repression of a Splice Variant of Cynomolgus MacaqueCXCL1Lby Its C-Terminal Sequence. Journal of Interferon and Cytokine Research, 2017, 37, 129-138.	1,2	0
83	Predicting PRDM9 Binding Sites by a Convolutional Neural Network and Verification Using Genetic Recombination Map. IPSJ Transactions on Bioinformatics, 2022, 15, 9-16.	0.2	0
84	Title is missing!. , 2020, 15, e0232274.		0
85	Title is missing!. , 2020, 15, e0232274.		0
86	Title is missing!. , 2020, 15, e0232274.		0
87	Title is missing!. , 2020, 15, e0232274.		0