Mar Quiñones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7266906/publications.pdf Version: 2024-02-01

MAD OULÃ+ONES

#	Article	IF	CITATIONS
1	Inhibition of Angiotensin-Converting Enzyme Activity by Flavonoids: Structure-Activity Relationship Studies. PLoS ONE, 2012, 7, e49493.	2.5	257
2	Beneficial effects of polyphenols on cardiovascular disease. Pharmacological Research, 2013, 68, 125-131.	7.1	230
3	Low-molecular procyanidin rich grape seed extract exerts antihypertensive effect in males spontaneously hypertensive rats. Food Research International, 2013, 51, 587-595.	6.2	89
4	Antihypertensive Effect of a Polyphenol-Rich Cocoa Powder Industrially Processed To Preserve the Original Flavonoids of the Cocoa Beans. Journal of Agricultural and Food Chemistry, 2009, 57, 6156-6162.	5.2	88
5	Serum metabolites of proanthocyanidin-administered rats decrease lipid synthesis in HepG2 cells. Journal of Nutritional Biochemistry, 2013, 24, 2092-2099.	4.2	48
6	Soluble fiber-enriched diets improve inflammation and oxidative stress biomarkers in Zucker fatty rats. Pharmacological Research, 2011, 64, 31-35.	7.1	44
7	Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance. Molecular Metabolism, 2015, 4, 961-970.	6.5	44
8	p53 in AgRP neurons is required for protection against diet-induced obesity via JNK1. Nature Communications, 2018, 9, 3432.	12.8	41
9	Involvement of nitric oxide and prostacyclin in the antihypertensive effect of low-molecular-weight procyanidin rich grape seed extract in male spontaneously hypertensive rats. Journal of Functional Foods, 2014, 6, 419-427.	3.4	34
10	MCH Regulates SIRT1/FoxO1 and Reduces POMC Neuronal Activity to Induce Hyperphagia, Adiposity, and Glucose Intolerance. Diabetes, 2019, 68, 2210-2222.	0.6	34
11	Glucagon Control on Food Intake and Energy Balance. International Journal of Molecular Sciences, 2019, 20, 3905.	4.1	32
12	Effect of a Soluble Cocoa Fiber-Enriched Diet in Zucker Fatty Rats. Journal of Medicinal Food, 2010, 13, 621-628.	1.5	31
13	Effect of a cocoa polyphenol extract in spontaneously hypertensive rats. Food and Function, 2011, 2, 649.	4.6	31
14	Changes in Arterial Blood Pressure of a Soluble Cocoa Fiber Product in Spontaneously Hypertensive Rats. Journal of Agricultural and Food Chemistry, 2010, 58, 1493-1501.	5.2	27
15	Chrelin and liver disease. Reviews in Endocrine and Metabolic Disorders, 2020, 21, 45-56.	5.7	26
16	Long-term intake of CocoanOX attenuates the development of hypertension in spontaneously hypertensive rats. Food Chemistry, 2010, 122, 1013-1019.	8.2	24
17	Evidence that nitric oxide mediates the blood pressure lowering effect of a polyphenol-rich cocoa powder in spontaneously hypertensive rats. Pharmacological Research, 2011, 64, 478-481.	7.1	24
18	Pharmacological and Genetic Manipulation of p53 in Brown Fat at Adult But Not Embryonic Stages Regulates Thermogenesis and Body Weight in Male Mice. Endocrinology, 2016, 157, 2735-2749.	2.8	23

Mar Quiñones

#	Article	IF	CITATIONS
19	Prebiotics Supplementation Impact on the Reinforcing and Motivational Aspect of Feeding. Frontiers in Endocrinology, 2018, 9, 273.	3.5	22
20	Mechanisms for antihypertensive effect of CocoanOX, a polyphenol-rich cocoa powder, in spontaneously hypertensive rats. Food Research International, 2011, 44, 1203-1208.	6.2	21
21	Cross-talk between SIRT1 and endocrine factors: effects on energy homeostasis. Molecular and Cellular Endocrinology, 2014, 397, 42-50.	3.2	21
22	The blood pressure effect and related plasma levels of flavan-3-ols in spontaneously hypertensive rats. Food and Function, 2015, 6, 3479-3489.	4.6	21
23	Circulating Irisin Levels Are Not Regulated by Nutritional Status, Obesity, or Leptin Levels in Rodents. Mediators of Inflammation, 2015, 2015, 1-11.	3.0	13
24	Rat health status affects bioavailability, target tissue levels, and bioactivity of grape seed flavanols. Molecular Nutrition and Food Research, 2017, 61, 1600342.	3.3	13
25	Hypothalamic Actions of SIRT1 and SIRT6 on Energy Balance. International Journal of Molecular Sciences, 2021, 22, 1430.	4.1	13
26	Exciting advances in GPCR-based drugs discovery for treating metabolic disease and future perspectives. Expert Opinion on Drug Discovery, 2019, 14, 421-431.	5.0	11
27	The Brain: A New Organ for the Metabolic Actions of SIRT1. Hormone and Metabolic Research, 2013, 45, 960-966.	1.5	9
28	Sirt3 in POMC neurons controls energy balance in a sex- and diet-dependent manner. Redox Biology, 2021, 41, 101945.	9.0	9
29	Crosstalk between Melanin Concentrating Hormone and Endocrine Factors: Implications for Obesity. International Journal of Molecular Sciences, 2022, 23, 2436.	4.1	7
30	Metabolic actions of the growth hormone-insulin growth factor-1 axis and its interaction with the central nervous system. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 919-930.	5.7	5
31	p53 and energy balance: meeting hypothalamic AgRP neurons. Cell Stress, 2018, 2, 329-331.	3.2	1