Julie L Lockwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7265576/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology and Evolution, 1999, 14, 450-453.	8.7	2,040
2	The role of propagule pressure in explaining species invasions. Trends in Ecology and Evolution, 2005, 20, 223-228.	8.7	1,964
3	Progress toward understanding the ecological impacts of nonnative species. Ecological Monographs, 2013, 83, 263-282.	5.4	543
4	The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Diversity and Distributions, 2009, 15, 904-910.	4.1	495
5	Invasion Science: A Horizon Scan of Emerging Challenges and Opportunities. Trends in Ecology and Evolution, 2017, 32, 464-474.	8.7	312
6	The influence of numbers on invasion success. Molecular Ecology, 2015, 24, 1942-1953.	3.9	196
7	Global patterns of introduction effort and establishment success in birds. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S405-8.	2.6	184
8	Pattern and process of biotic homogenization in the New Pangaea. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4772-4777.	2.6	162
9	When pets become pests: the role of the exotic pet trade in producing invasive vertebrate animals. Frontiers in Ecology and the Environment, 2019, 17, 323-330.	4.0	159
10	Dissecting the null model for biological invasions: A meta-analysis of the propagule pressure effect. PLoS Biology, 2018, 16, e2005987.	5.6	156
11	Extinction in a field of bullets. Biological Conservation, 2001, 102, 97-105.	4.1	150
12	A conceptual map of invasion biology: Integrating hypotheses into a consensus network. Global Ecology and Biogeography, 2020, 29, 978-991.	5.8	150
13	The role of species traits in the establishment success of exotic birds. Global Change Biology, 2009, 15, 2852-2860.	9.5	146
14	Effects of exotic species on evolutionary diversification. Trends in Ecology and Evolution, 2007, 22, 481-488.	8.7	144
15	Using Taxonomy to Predict Success among Introduced Avifauna: Relative Importance of Transport and Establishment. Conservation Biology, 1999, 13, 560-567.	4.7	134
16	Influences on the transport and establishment of exotic bird species: an analysis of the parrots (Psittaciformes) of the world. Global Change Biology, 2004, 10, 417-426.	9.5	125
17	Effects of urbanization on California's fish diversity: Differentiation, homogenization and the influence of spatial scale. Biological Conservation, 2006, 127, 310-318.	4.1	117
18	The â€~known unknowns' of invasive species impact measurement. Biological Invasions, 2020, 22, 1513-152.	5.2.4	103

#	Article	IF	CITATIONS
19	Four priority areas to advance invasion science in the face of rapid environmental change. Environmental Reviews, 2021, 29, 119-141.	4.5	98
20	Taxonomic homogenization of the global avifauna. Animal Conservation, 2000, 3, 27-35.	2.9	97
21	Hotspots and species diversity. Nature, 1994, 367, 326-327.	27.8	91
22	Assembling Ecological Communities in Time and Space. Oikos, 1997, 80, 549.	2.7	89
23	Title is missing!. Biological Invasions, 2001, 3, 1-8.	2.4	79
24	The relationship between functional and taxonomic homogenization. Global Ecology and Biogeography, 2011, 20, 134-144.	5.8	74
25	A perfect storm: two ecosystem engineers interact to degrade deciduous forests of New Jersey. Biological Invasions, 2008, 10, 785-795.	2.4	73
26	Moving eDNA surveys onto land: Strategies for active eDNA aggregation to detect invasive forest insects. Molecular Ecology Resources, 2020, 20, 746-755.	4.8	71
27	A new approach to the "apparent survival―problem: estimating true survival rates from markâ€ [°] recapture studies. Ecology, 2012, 93, 1509-1516.	3.2	68
28	Pet problems: Biological and economic factors that influence the release of alien reptiles and amphibians by pet owners. Journal of Applied Ecology, 2018, 55, 2632-2640.	4.0	66
29	When does restoration succeed?. , 1999, , 363-392.		64
30	Mistakes in the analysis of exotic species establishment: source pool designation and correlates of introduction success among parrots (Aves: Psittaciformes) of the world. Journal of Biogeography, 2004, 31, 277-284.	3.0	61
31	The island biogeography of exotic bird species. Global Ecology and Biogeography, 2008, 17, 246-251.	5.8	61
32	Connectance determines invasion success via trophic interactions in model food webs. Oikos, 2010, 119, 1970-1976.	2.7	58
33	Non-natives: plusses of invasion ecology. Nature, 2011, 475, 36-36.	27.8	54
34	Lessons from the establishment of exotic species: a meta-analytical case study using birds. Journal of Animal Ecology, 2005, 74, 250-258.	2.8	53
35	Biodiversity assessments: Origin matters. PLoS Biology, 2018, 16, e2006686.	5.6	52
36	Changes in taxonomic and phylogenetic diversity in the Anthropocene. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200777.	2.6	52

#	Article	IF	CITATIONS
37	Smoke on the water: the interplay of fire and water flow on Everglades restoration. Frontiers in Ecology and the Environment, 2003, 1, 462-468.	4.0	51
38	Propagule pressure as a driver of establishment success in deliberately introduced exotic species: fact or artefact?. Biological Invasions, 2013, 15, 1459-1469.	2.4	51
39	HAWAIIAN HONEYCREEPER HOME RANGE SIZE VARIES WITH HABITAT: IMPLICATIONS FOR NATIVE ACACIA KOA FORESTRY. , 2005, 15, 1053-1061.		49
40	Early detection of invasive exotic insect infestations using eDNA from crop surfaces. Frontiers in Ecology and the Environment, 2018, 16, 265-270.	4.0	46
41	The implications of Cape Sable seaside sparrow demography for Everglades restoration. Animal Conservation, 2001, 4, 275-281.	2.9	43
42	Spatial scale and evolutionary history determine the degree of taxonomic homogenization across island bird assemblages. Diversity and Distributions, 2007, 13, 458-466.	4.1	42
43	Morphological Assortment and the Assembly of Communities of Introduced Passeriforms on Oceanic Islands: Tahiti Versus Oahu. American Naturalist, 1993, 141, 398-408.	2.1	42
44	Biotic Homogenization: A Sequential and Selective Process. , 2001, , 1-17.		41
45	A Metric for Analyzing Taxonomic Patterns of Extinction Risk. Conservation Biology, 2002, 16, 1137-1142.	4.7	40
46	Ecomorphological pattern in Bermuda birds: The influence of competition and implications for nature preserves. Evolutionary Ecology, 1994, 8, 53-60.	1.2	37
47	Patterns of success in passeriform bird introductions on Saint Helena. Oecologia, 1995, 103, 337-342.	2.0	37
48	Evidence-based decisions on the use of predator exclosures in shorebird conservation. Biological Conservation, 2009, 142, 3213-3218.	4.1	35
49	Exotic birds show lags in population growth. Diversity and Distributions, 2014, 20, 547-554.	4.1	32
50	Endangered species management requires a new look at the benefit of fire: The Cape Sable seaside sparrow in the Everglades ecosystem. Biological Conservation, 2007, 136, 398-407.	4.1	31
51	Does ecosystem and evolutionary stability include rare species?. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 127, 191-207.	2.3	30
52	Passerine introductions to New Zealand support a positive effect of propagule pressure on establishment success. Biodiversity and Conservation, 2011, 20, 2189-2199.	2.6	30
53	Cumulative metaâ€analysis identifies declining but negative impacts of invasive species on richness after 20Âyr. Ecology, 2020, 101, e03082.	3.2	30
54	The state, transport, and fate of aboveground terrestrial arthropod eDNA. Environmental DNA, 2021, 3, 1081-1092.	5.8	30

#	Article	IF	CITATIONS
55	The varying role of population abundance in structuring indices of biotic homogenization. Journal of Biogeography, 2008, 35, 884-892.	3.0	29
56	A stochastic model for integrating changes in species richness and community similarity across spatial scales. Oikos, 2006, 115, 207-218.	2.7	27
57	Contemporary morphological diversification of passerine birds introduced to the Hawaiian archipelago. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2392-2400.	2.6	26
58	Morphological dispersion of introduced Hawaiian finches: evidence for competition and a Narcissus effect. Evolutionary Ecology, 1992, 6, 45-55.	1.2	23
59	Life in a Double-Hotspot: The Transformation of Hawaiian Passerine Bird Diversity following Invasion and Extinction. Biological Invasions, 2006, 8, 449-457.	2.4	23
60	Seeking International Agreement on What it Means To be "Native― Conservation Letters, 2017, 10, 238-247.	5.7	23
61	The International Vertebrate Pet Trade Network and Insights from US Imports of Exotic Pets. BioScience, 2021, 71, 977-990.	4.9	23
62	Severe and rapid population declines in exotic birds. Biological Invasions, 2016, 18, 1667-1678.	2.4	22
63	Realâ€ŧime PCR assay to detect brown marmorated stink bug, <i>Halyomorpha halys</i> (StÃ¥l), in environmental DNA. Pest Management Science, 2016, 72, 1854-1861.	3.4	21
64	Terrestrial eDNA survey outperforms conventional approach for detecting an invasive pest insect within an agricultural ecosystem. Environmental DNA, 2021, 3, 1102-1112.	5.8	21
65	Frameworks used in invasion science: progress and prospects. NeoBiota, 0, 62, 1-30.	1.0	20
66	Importance of estimating dispersal for endangered bird management. Conservation Letters, 2010, 3, 260-266.	5.7	19
67	Spatial Homogenization of the Aquatic Fauna of Tennessee: Extinction and Invasion Following Land Use Change and Habitat Alteration. , 2001, , 245-257.		18
68	Open-coast sandy beaches and coastal dunes. , 2014, , 37-94.		18
69	Effectiveness of Artificial Song Playback on Influencing the Settlement Decisions of an Endangered Resident Grassland Passerine. Condor, 2012, 114, 846-855.	1.6	17
70	Evaluating the long-term effectiveness of terrestrial protected areas: a 40-year look at forest bird diversity. Biodiversity and Conservation, 2019, 28, 811-826.	2.6	17
71	Managing propagule pressure to prevent invasive species establishments: propagule size, number, and risk–release curve. Ecological Applications, 2021, 31, e02314.	3.8	17
72	Rapid evolution of great kiskadees on Bermuda: an assessment of the ability of the island rule to predict the direction of contemporary evolution in exotic vertebrates. Journal of Biogeography, 2009, 36, 2204-2211.	3.0	16

#	Article	IF	CITATIONS
73	Mate-Finding as an Overlooked Critical Determinant of Dispersal Variation in Sexually-Reproducing Animals. PLoS ONE, 2012, 7, e38091.	2.5	16
74	Too few data and not enough time: approaches to detecting Allee effects in threatened species. Conservation Letters, 2012, 5, 313-322.	5.7	15
75	Tropical paradox: a multi-scale analysis of the invasion paradox within Miami Rock Ridge tropical hardwood hammocks. Biological Invasions, 2013, 15, 921-930.	2.4	15
76	Reciprocal human-natural system feedback loops within the invasion process. NeoBiota, 0, 62, 489-508.	1.0	15
77	Cryptic introductions and the interpretation of island biodiversity. Molecular Ecology, 2013, 22, 2313-2324.	3.9	14
78	Toward "Rules―for Studying Biological Invasions. Bulletin of the Ecological Society of America, 2019, 100, e01607.	0.2	14
79	Endangered Cape Sable Seaside Sparrow Survival. Journal of Wildlife Management, 2009, 73, 530-537.	1.8	13
80	Introduced avifaunas as natural experiments in community assembly. , 1999, , 108-129.		12
81	Using long-term occupancy information to inform the management of Cape Sable seaside sparrows in the Everglades. Biological Conservation, 2007, 139, 139-149.	4.1	12
82	A framework for predicting which non-native individuals and species will enter, survive, and exit human-mediated transport. Biological Invasions, 2020, 22, 217-231.	2.4	12
83	How increasing levels of private land enrollment in conservation agreements affect the population viability of grassland birds. Biodiversity and Conservation, 2010, 19, 2343-2357.	2.6	11
84	Biological Diversity: Species: would any of them be missed?. Current Biology, 1994, 4, 455-457.	3.9	10
85	Lessons from introductions of exotic species as a possible information source for managing translocations of birds. Wildlife Research, 2008, 35, 193.	1.4	10
86	Variation in Laying Date and Clutch Size: the Ev erglades Environment and the Endangered Cape Sable Seaside Sparrow (Ammodramus Maritimus Mirabilis). Auk, 2011, 128, 374-381.	1.4	10
87	How to effectively manage invasive predators to protect their native prey. Biological Conservation, 2013, 165, 146-153.	4.1	10
88	The portability of foodweb dynamics: reassembling an Australian eucalypt-psyllid-bird association within California. Global Ecology and Biogeography, 2004, 13, 445-450.	5.8	9
89	Land ownership patterns associated with declining forest birds: targeting the right policy and management for the right birds. Environmental Conservation, 2015, 42, 216-226.	1.3	9
90	A Novel Tool for Making Policy Recommendations Based on PVA: Helping Theory Become Practice. Conservation Letters, 2015, 8, 190-198.	5.7	9

#	Article	IF	CITATIONS
91	Simple settlement decisions explain common dispersal patterns in territorial species. Journal of Animal Ecology, 2016, 85, 1182-1190.	2.8	8
92	The establishment threat of the obligate brood-parasitic Pin-tailed Whydah (<i>Vidua macroura</i>) in North America and the Antilles. Condor, 2017, 119, 449-458.	1.6	8
93	Finding clarity in ecological outcomes using empirical integrated social–ecological systems: A case study of agricultureâ€dependent grassland birds. Journal of Applied Ecology, 2021, 58, 528-538.	4.0	8
94	The impact of personality on the success of prospecting behavior in changing landscapes. Environmental Epigenetics, 2015, 61, 557-568.	1.8	7
95	A Bayesian approach for characterizing uncertainty in declaring a population collapse. Ecological Modelling, 2016, 328, 78-84.	2.5	7
96	Taxonomic homogenization of the global avifauna. Animal Conservation, 2000, 3, 27-35.	2.9	6
97	Evaluation of sample collection and storage protocols for surface <scp>eDNA</scp> surveys of an invasive terrestrial insect. Environmental DNA, 2022, 4, 1201-1211.	5.8	6
98	Evaluating the impacts of fishing on sex-changing fish: a game-theoretic approach. ICES Journal of Marine Science, 2017, 74, 652-659.	2.5	5
99	Influence of invasion history on rapid morphological divergence across island populations of an exotic bird. Ecology and Evolution, 2018, 8, 5291-5302.	1.9	4
100	Mapping shifts in spatial synchrony in grassland birds to inform conservation planning. Conservation Biology, 2021, 35, 1029-1038.	4.7	4
101	Conservation implications of reproductive success of American Oystercatchers in an urbanized barrier island complex. Wader Study, 2016, 123, .	0.4	4
102	IS SPREAD OF INVASIVE SPECIES REGULATED? USING ECOLOGICAL THEORY TO INTERPRET STATISTICAL ANALYSIS. Ecology, 2008, 89, 2377-2383.	3.2	3
103	Contemporary divergence of island bird plumage. Journal of Avian Biology, 2014, 45, 291-295.	1.2	3
104	Invasion Science: Looking Forward Rather Than Revisiting Old Ground – A Reply to Zenni et al Trends in Ecology and Evolution, 2017, 32, 809-810.	8.7	3
105	Taxonomic and Phylogenetic Homogenization Across US National Parks: The Role of Non-native Species. Ecology and Ethics, 2018, , 275-288.	1.0	3
106	Evaluation of unharvested refugia for grassland bird conservation within active hayfields. Avian Conservation and Ecology, 2019, 14, .	0.8	3
107	Meta-analysis shows that overabundant deer (Cervidae) populations consistently decrease average population abundance and species richness of forest birds. Condor, 2021, 123, .	1.6	3
108	Predicting which species will become invasive: what's taxonomy got to do with it?. , 2001, , 365-384.		2

Predicting which species will become invasive: what's taxonomy got to do with it?. , 2001, , 365-384. 108

#	Article	IF	CITATIONS
109	Exotic birds provide unique insight into species invasions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9237-9239.	7.1	2
110	The shape of things to come: non-native mammalian predators and the fate of island bird diversity. , 2009, , 235-248.		2
111	MORPHOLOGICAL DISPERSION OF THE INTRODUCED LAND-BIRDS OF SAINT HELENA. Ostrich, 1996, 67, 111-11	l7.1.1	1
112	Editorial: A Close Look At Extinction Rates. Biological Conservation, 2011, 144, 665.	4.1	1
113	The impacts of invasive species on coastal marine ecosystems. , 0, , 245-264.		1
114	Correction: Four priority areas to advance invasion science in the face of rapid environmental change. Environmental Reviews, 2022, 30, 174-174.	4.5	1