Richard M Ransohoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7264751/publications.pdf Version: 2024-02-01

		1172	767
323	67,473	111	249
papers	citations	h-index	g-index
353	353	353	60369
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Blocking immune cell infiltration of the central nervous system to tame Neuroinflammation in Amyotrophic lateral sclerosis. Brain, Behavior, and Immunity, 2022, 105, 1-14.	4.1	19
2	Isolation of Microglia and Analysis of Protein Expression by Flow Cytometry: Avoiding the Pitfall of Microglia Background Autofluorescence. Bio-protocol, 2021, 11, e4091.	0.4	1
3	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	14.8	1,098
4	MOG autoantibodies trigger a tightly-controlled FcR and BTK-driven microglia proliferative response. Brain, 2021, 144, 2361-2374.	7.6	29
5	Microglial transcriptome analysis in the rNLS8 mouse model of TDP-43 proteinopathy reveals discrete expression profiles associated with neurodegenerative progression and recovery. Acta Neuropathologica Communications, 2021, 9, 140.	5.2	25
6	New BBB Model Reveals That IL-6 Blockade Suppressed the BBB Disorder, Preventing Onset of NMOSD. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	40
7	Crosstalk Between Astrocytes and Microglia: An Overview. Frontiers in Immunology, 2020, 11, 1416.	4.8	224
8	BIN1 protein isoforms are differentially expressed in astrocytes, neurons, and microglia: neuronal and astrocyte BIN1 are implicated in tau pathology. Molecular Neurodegeneration, 2020, 15, 44.	10.8	32
9	Organotypic Brain Slice Culture Microglia Exhibit Molecular Similarity to Acutely-Isolated Adult Microglia and Provide a Platform to Study Neuroinflammation. Frontiers in Cellular Neuroscience, 2020, 14, 592005.	3.7	29
10	Natural killer cells modulate motor neuron-immune cell cross talk in models of Amyotrophic Lateral Sclerosis. Nature Communications, 2020, 11, 1773.	12.8	93
11	Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. ELife, 2020, 9, .	6.0	49
12	Cell-autonomous and non-cell autonomous effects of neuronal BIN1 loss in vivo. PLoS ONE, 2019, 14, e0220125.	2.5	17
13	BIN1 favors the spreading of Tau via extracellular vesicles. Scientific Reports, 2019, 9, 9477.	3.3	107
14	Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nature Neuroscience, 2019, 22, 1075-1088.	14.8	207
15	Single-cell transcriptomic analysis of Alzheimer's disease. Nature, 2019, 570, 332-337.	27.8	1,528
16	To Sleep, Perchance to Survive?. Trends in Immunology, 2019, 40, 273-274.	6.8	0
17	<i>Cx3cr1-</i> deficient microglia exhibit a premature aging transcriptome. Life Science Alliance, 2019, 2, e201900453.	2.8	64
18	Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinonathy. Nature Neuroscience, 2018, 21, 329-340	14.8	220

#	Article	IF	CITATIONS
19	Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain, 2018, 141, 422-458.	7.6	315
20	Infiltrating macrophages are broadly activated at the early stage to support acute skeletal muscle injury repair. Journal of Neuroimmunology, 2018, 317, 55-66.	2.3	32
21	Effect of PF-00547659 on Central Nervous System Immune Surveillance and Circulating β7+ T Cells in Crohn's Disease: Report of the TOSCA Study. Journal of Crohn's and Colitis, 2018, 12, 188-196.	1.3	24
22	Traumatic Brain Injury in hTau Model Mice: Enhanced Acute Macrophage Response and Altered Long-Term Recovery. Journal of Neurotrauma, 2018, 35, 73-84.	3.4	26
23	All (animal) models (of neurodegeneration) are wrong. Are they also useful?. Journal of Experimental Medicine, 2018, 215, 2955-2958.	8.5	54
24	Role of the Fractalkine Receptor in CNS Autoimmune Inflammation: New Approach Utilizing a Mouse Model Expressing the Human CX3CR1I249/M280 Variant. Frontiers in Cellular Neuroscience, 2018, 12, 365.	3.7	44
25	Immune-cell crosstalk in multiple sclerosis. Nature, 2018, 563, 194-195.	27.8	13
26	A whole-genome sequence study identifies genetic risk factors for neuromyelitis optica. Nature Communications, 2018, 9, 1929.	12.8	73
27	The Trem2 R47H variant confers loss-of-function-like phenotypes in Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 29.	10.8	147
28	TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation. Journal of Clinical Investigation, 2018, 128, 5399-5412.	8.2	78
29	Should We Stop Saying â€~Glia' and â€~Neuroinflammation'?. Trends in Molecular Medicine, 2017, 23, 4	86 చ ®0.	77
30	IL-17 induced NOTCH1 activation in oligodendrocyte progenitor cells enhances proliferation and inflammatory gene expression. Nature Communications, 2017, 8, 15508.	12.8	71
31	An environment-dependent transcriptional network specifies human microglia identity. Science, 2017, 356, .	12.6	911
32	Effects of neuromyelitis optica–lgG at the blood–brain barrier in vitro. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e311.	6.0	153
33	Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2017, 37, 637-647.	3.6	329
34	Glucose-regulated protein 78 autoantibody associates with blood-brain barrier disruption in neuromyelitis optica. Science Translational Medicine, 2017, 9, .	12.4	110
35	A Neuroprotective Effect of the Glutamate Receptor Antagonist MK801 on Long-Term Cognitive and Behavioral Outcomes Secondary to Experimental Cerebral Malaria. Molecular Neurobiology, 2017, 54, 7063-7082.	4.0	25
36	CCR2 deficiency does not provide sustained improvement of muscular dystrophy in <i> mdx ^{5cv} </i> mice. FASEB Journal, 2017, 31, 35-46.	0.5	27

#	Article	IF	CITATIONS
37	Specks of insight into Alzheimer's disease. Nature, 2017, 552, 342-343.	27.8	14
38	TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Molecular Neurodegeneration, 2017, 12, 74.	10.8	208
39	Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2017, 37, 637-647.	3.6	52
40	GRP78 autoantibodies initiate the breakdown of the blood-brain barrier in neuromyelitis optica. Oncotarget, 2017, 8, 106175-106176.	1.8	2
41	CX3CR1â€dependent recruitment of mature NK cells into the central nervous system contributes to control autoimmune neuroinflammation. European Journal of Immunology, 2016, 46, 1984-1996.	2.9	56
42	Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion. Stem Cells, 2016, 34, 2026-2039.	3.2	189
43	Identification and Function of Fibrocytes in Skeletal Muscle Injury Repair and Muscular Dystrophy. Journal of Immunology, 2016, 197, 4750-4761.	0.8	22
44	Surprises from the sanitary engineers. Nature, 2016, 532, 185-186.	27.8	8
45	The blood–brain barrier. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 133, 39-59.	1.8	152
46	Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5665-74.	7.1	266
47	Efficient derivation of microglia-like cells from human pluripotent stem cells. Nature Medicine, 2016, 22, 1358-1367.	30.7	486
48	How neuroinflammation contributes to neurodegeneration. Science, 2016, 353, 777-783.	12.6	1,408
49	A polarizing question: do M1 and M2 microglia exist?. Nature Neuroscience, 2016, 19, 987-991.	14.8	1,177
50	Reply. Annals of Neurology, 2016, 80, 793-794.	5.3	0
51	T cell–intrinsic ASC critically promotes TH17-mediated experimental autoimmune encephalomyelitis. Nature Immunology, 2016, 17, 583-592.	14.5	127
52	Microglial Physiology and Pathophysiology: Insights from Genome-wide Transcriptional Profiling. Immunity, 2016, 44, 505-515.	14.3	309
53	Neutrophil depletion after subarachnoid hemorrhage improves memory via NMDA receptors. Brain, Behavior, and Immunity, 2016, 54, 233-242.	4.1	73
54	CX ₃ CR1 deficiency delays acute skeletal muscle injury repair by impairing macrophage functions. FASEB Journal, 2016, 30, 380-393.	0.5	58

#	Article	IF	CITATIONS
55	Microglia in Health and Disease. Cold Spring Harbor Perspectives in Biology, 2016, 8, a020560.	5.5	211
56	Altered Neuroinflammation and Behavior after Traumatic Brain Injury in a Mouse Model of Alzheimer's Disease. Journal of Neurotrauma, 2016, 33, 625-640.	3.4	42
57	A destructive feedback loop mediated by CXCL 10 in central nervous system inflammatory disease. Annals of Neurology, 2015, 78, 619-629.	5.3	26
58	Blood–brain barrier and neurological diseases. Clinical and Experimental Neuroimmunology, 2015, 6, 351-361.	1.0	7
59	Editorial Research Topic "Chemokines and chemokine receptors in brain homeostasis― Frontiers in Cellular Neuroscience, 2015, 9, 132.	3.7	7
60	Multiple sclerosis—a quiet revolution. Nature Reviews Neurology, 2015, 11, 134-142.	10.1	286
61	TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. Journal of Experimental Medicine, 2015, 212, 287-295.	8.5	538
62	Nuclear Receptors License Phagocytosis by Trem2 ⁺ Myeloid Cells in Mouse Models of Alzheimer's Disease. Journal of Neuroscience, 2015, 35, 6532-6543.	3.6	144
63	Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain, 2015, 138, 1738-1755.	7.6	417
64	Macrophage Migration Inhibitory Factor, the Zelig of Cytokines, Is a Chaperone for SOD1 in Non-Neuronal Cells. Neuron, 2015, 86, 2-3.	8.1	1
65	Immune attack: the role of inflammation in Alzheimer disease. Nature Reviews Neuroscience, 2015, 16, 358-372.	10.2	1,677
66	Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell–cell communication by chemokines. Trends in Pharmacological Sciences, 2015, 36, 471-480.	8.7	263
67	Neuroinflammation in Alzheimer's disease. Lancet Neurology, The, 2015, 14, 388-405.	10.2	4,129
68	A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. Journal of Experimental Medicine, 2015, 212, 447-456.	8.5	367
69	Neuroinflammation: Ways in Which the Immune System Affects the Brain. Neurotherapeutics, 2015, 12, 896-909.	4.4	170
70	Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli?. PLoS ONE, 2015, 10, e0133392.	2.5	72
71	Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget, 2015, 6, 15077-15094.	1.8	154
72	Mitochondrial immobilization mediated by syntaphilin facilitates survival of demyelinated axons. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9953-9958.	7.1	98

#	Article	IF	CITATIONS
73	Microglial derived tumor necrosis factor-α drives Alzheimer's disease-related neuronal cell cycle events. Neurobiology of Disease, 2014, 62, 273-285.	4.4	120
74	Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nature Neuroscience, 2014, 17, 131-143.	14.8	2,056
75	Opposing Effects of Membrane-Anchored CX3CL1 on Amyloid and Tau Pathologies via the p38 MAPK Pathway. Journal of Neuroscience, 2014, 34, 12538-12546.	3.6	98
76	MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases. Journal of Experimental Medicine, 2014, 211, 887-907.	8.5	70
77	Involvement of junctional adhesion molecules in the pathogenesis of experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2014, 275, 34.	2.3	0
78	Rapid Remodeling of Tight Junctions during Paracellular Diapedesis in a Human Model of the Blood–Brain Barrier. Journal of Immunology, 2014, 193, 2427-2437.	0.8	81
79	Ontogeny and Functions of Central Nervous System Macrophages. Journal of Immunology, 2014, 193, 2615-2621.	0.8	113
80	Good barriers make good neighbors. Science, 2014, 346, 36-37.	12.6	3
81	Systemic Lipopolysaccharide Induces Cochlear Inflammation and Exacerbates the Synergistic Ototoxicity of Kanamycin and Furosemide. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 555-570.	1.8	76
82	Differential roles of microglia and monocytes in the inflamed central nervous system. Journal of Experimental Medicine, 2014, 211, 1533-1549.	8.5	711
83	An in vitro blood–brain barrier model combining shear stress and endothelial cell/astrocyte co-culture. Journal of Neuroscience Methods, 2014, 232, 165-172.	2.5	66
84	Clinical outcomes following surgical management of coexistent cervical stenosis and multiple sclerosis: a cohort-controlled analysis. Spine Journal, 2014, 14, 331-337.	1.3	12
85	Modulating neurotoxicity through CX3CL1/CX3CR1 signaling. Frontiers in Cellular Neuroscience, 2014, 8, 229.	3.7	182
86	CCR4 Agonists CCL22 and CCL17 are Elevated in Pediatric OMS Sera: Rapid and Selective Down-Regulation of CCL22 by ACTH or Corticosteroids. Journal of Clinical Immunology, 2013, 33, 817-825.	3.8	13
87	Regulation of Adaptive Immunity by the Fractalkine Receptor during Autoimmune Inflammation. Journal of Immunology, 2013, 191, 1063-1072.	0.8	76
88	Development, maintenance and disruption of the blood-brain barrier. Nature Medicine, 2013, 19, 1584-1596.	30.7	1,750
89	Editors' preface: Microglia—A new era dawns. Glia, 2013, 61, 1-2.	4.9	7
90	Characterization of natural killer cells in paired CSF and blood samples during neuroinflammation. Journal of Neuroimmunology, 2013, 254, 165-169.	2.3	30

#	Article	IF	CITATIONS
91	Synaptic plasticity in the hippocampus shows resistance to acute ethanol exposure in transgenic mice with astrocyte-targeted enhanced CCL2 expression. Neuropharmacology, 2013, 67, 115-125.	4.1	32
92	CCR7 signaling in pediatric opsoclonus–myoclonus: Upregulated serum CCL21 expression is steroid-responsive. Cytokine, 2013, 64, 331-336.	3.2	14
93	Act1 mediates IL-17–induced EAE pathogenesis selectively in NG2+ glial cells. Nature Neuroscience, 2013, 16, 1401-1408.	14.8	174
94	Immunological and clinical consequences of treating a patient with natalizumab. Multiple Sclerosis Journal, 2012, 18, 335-344.	3.0	40
95	Bone Marrow Transplantation Confers Modest Benefits in Mouse Models of Huntington's Disease. Journal of Neuroscience, 2012, 32, 133-142.	3.6	71
96	Illuminating neuromyelitis optica pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1001-1002.	7.1	23
97	The Fractalkine Receptor but Not CCR2 Is Present on Microglia from Embryonic Development throughout Adulthood. Journal of Immunology, 2012, 188, 29-36.	0.8	305
98	Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18150-18155.	7.1	210
99	CXCL12-Induced Monocyte-Endothelial Interactions Promote Lymphocyte Transmigration Across an in Vitro Blood-Brain Barrier. Science Translational Medicine, 2012, 4, 119ra14.	12.4	65
100	Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner. Neuron, 2012, 74, 691-705.	8.1	3,040
101	The anatomical and cellular basis of immune surveillance in the central nervous system. Nature Reviews Immunology, 2012, 12, 623-635.	22.7	790
102	Innate immunity in the central nervous system. Journal of Clinical Investigation, 2012, 122, 1164-1171.	8.2	805
103	Role of CCR2 in immunobiology and neurobiology. Clinical and Experimental Neuroimmunology, 2012, 3, 16-29.	1.0	25
104	Licensed in the lungs. Nature, 2012, 488, 595-596.	27.8	6
105	Chemokine CXCL12 in neurodegenerative diseases: an SOS signal for stem cell-based repair. Trends in Neurosciences, 2012, 35, 619-628.	8.6	81
106	IL-17-Induced Act1-Mediated Signaling Is Critical for Cuprizone-Induced Demyelination. Journal of Neuroscience, 2012, 32, 8284-8292.	3.6	58
107	Re-establishing immunological self-tolerance in autoimmune disease. Nature Medicine, 2012, 18, 54-58.	30.7	65
108	Animal models of multiple sclerosis: the good, the bad and the bottom line. Nature Neuroscience, 2012, 15, 1074-1077.	14.8	291

7

#	Article	IF	CITATIONS
109	Inflammatory cell trafficking across the blood–brain barrier: chemokine regulation and <i>in vitro</i> models. Immunological Reviews, 2012, 248, 228-239.	6.0	272
110	Key role of CXCL13/CXCR5 axis for cerebrospinal fluid B cell recruitment in pediatric OMS. Journal of Neuroimmunology, 2012, 243, 81-88.	2.3	43
111	Chemokine receptor CXCR2: Physiology regulator and neuroinflammation controller?. Journal of Neuroimmunology, 2012, 246, 1-9.	2.3	84
112	Perspective: Let the sunshine in!. Nature, 2012, 484, S8-S8.	27.8	1
113	Macrophages recruited <i>via</i> CCR2 produce insulinâ€like growth factorâ€1 to repair acute skeletal muscle injury. FASEB Journal, 2011, 25, 358-369.	0.5	225
114	CXCR3-Dependent Plasma Blast Migration to the Central Nervous System during Viral Encephalomyelitis. Journal of Virology, 2011, 85, 6136-6147.	3.4	53
115	Microglia and monocytes: 'tis plain the twain meet in the brain. Nature Neuroscience, 2011, 14, 1098-1100.	14.8	36
116	Inflammatory Cortical Demyelination in Early Multiple Sclerosis. New England Journal of Medicine, 2011, 365, 2188-2197.	27.0	922
117	Blood ties. Nature, 2011, 477, 41-42.	27.8	6
118	Antiinflammatory Autoimmune Cellular Responses to Cardiac Troponin I in Idiopathic Dilated Cardiomyopathy. Journal of Cardiac Failure, 2011, 17, 359-365.	1.7	9
119	Excessive Biologic Response to IFNβ Is Associated with Poor Treatment Response in Patients with Multiple Sclerosis. PLoS ONE, 2011, 6, e19262.	2.5	38
120	G-CSF–mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. Blood, 2011, 117, 4349-4357.	1.4	179
121	D6 facilitates cellular migration and fluid flow to lymph nodes by suppressing lymphatic congestion. Blood, 2011, 118, 6220-6229.	1.4	70
122	Analyses of phenotypic and functional characteristics of CX3CR1â€expressing natural killer cells. Immunology, 2011, 133, 62-73.	4.4	72
123	Depletion of Ly6G/C+ cells ameliorates delayed cerebral vasospasm in subarachnoid hemorrhage. Journal of Neuroimmunology, 2011, 232, 94-100.	2.3	72
124	Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nature Neuroscience, 2011, 14, 1227-1235.	14.8	606
125	Impaired respiratory function in <i>mdx</i> and <i>mdx/utrn</i> ^{<i>+/â^'</i>} mice. Muscle and Nerve, 2011, 43, 263-267.	2.2	56
126	Multiple sclerosis normalâ€appearing white matter: Pathology–imaging correlations. Annals of Neurology, 2011, 70, 764-773.	5.3	235

#	Article	IF	CITATIONS
127	Chemokine receptor CXCR4 signaling modulates the growth factorâ€induced cell cycle of selfâ€renewing and multipotent neural progenitor cells. Glia, 2011, 59, 108-118.	4.9	40
128	CXCR2 signaling protects oligodendrocyte progenitor cells from IFN-γ/CXCL10-mediated apoptosis. Glia, 2011, 59, 1518-1528.	4.9	42
129	MMP9 deficiency does not decrease blood–brain barrier disruption, but increases astrocyte MMP3 expression during viral encephalomyelitis. Glia, 2011, 59, 1770-1781.	4.9	24
130	CX3CR1 Protein Signaling Modulates Microglial Activation and Protects against Plaque-independent Cognitive Deficits in a Mouse Model of Alzheimer Disease. Journal of Biological Chemistry, 2011, 286, 32713-32722.	3.4	225
131	The role of cell type-specific responses in IFN-β therapy of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19689-19694.	7.1	32
132	Deficient CX3CR1 Signaling Promotes Recovery after Mouse Spinal Cord Injury by Limiting the Recruitment and Activation of Ly6Clo/iNOS+ Macrophages. Journal of Neuroscience, 2011, 31, 9910-9922.	3.6	188
133	How Many Cell Types Does It Take to Wire a Brain?. Science, 2011, 333, 1391-1392.	12.6	30
134	Acute skeletal muscle injury: CCL2 expression by both monocytes and injured muscle is required for repair. FASEB Journal, 2011, 25, 3344-3355.	0.5	192
135	Expression of Fractalkine Receptor CX3CR1 on Cochlear Macrophages Influences Survival of Hair Cells Following Ototoxic Injury. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 223-234.	1.8	89
136	PML risk and natalizumab: more questions than answers. Lancet Neurology, The, 2010, 9, 231-233.	10.2	14
137	Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites. Journal of Immunological Methods, 2010, 352, 89-100.	1.4	85
138	Astrocyte-Restricted Ablation of Interleukin-17-Induced Act1-Mediated Signaling Ameliorates Autoimmune Encephalomyelitis. Immunity, 2010, 32, 414-425.	14.3	265
139	The myeloid cells of the central nervous system parenchyma. Nature, 2010, 468, 253-262.	27.8	670
140	Turning over the Chance card on MS susceptibility. Nature Immunology, 2010, 11, 570-572.	14.5	3
141	CXCR2-positive neutrophils are essential for cuprizone-induced demyelination: relevance to multiple sclerosis. Nature Neuroscience, 2010, 13, 319-326.	14.8	209
142	CXCR2 Signaling Protects Oligodendrocytes and Restricts Demyelination in a Mouse Model of Viral-Induced Demyelination. PLoS ONE, 2010, 5, e11340.	2.5	48
143	Myelin Repair Is Accelerated by Inactivating CXCR2 on Nonhematopoietic Cells. Journal of Neuroscience, 2010, 30, 9074-9083.	3.6	75
144	STAT-Phosphorylation–Independent Induction of Interferon Regulatory Factor-9 by Interferon-β. Journal of Interferon and Cytokine Research, 2010, 30, 163-170.	1.2	13

#	Article	IF	CITATIONS
145	Major Differences in the Responses of Primary Human Leukocyte Subsets to IFN-β. Journal of Immunology, 2010, 185, 5888-5899.	0.8	64
146	Monocytes Regulate T Cell Migration through the Glia Limitans during Acute Viral Encephalitis. Journal of Virology, 2010, 84, 4878-4888.	3.4	62
147	Regulation of Tau Pathology by the Microglial Fractalkine Receptor. Neuron, 2010, 68, 19-31.	8.1	532
148	CXCL12 and CXCR4 in bone marrow physiology. Expert Review of Hematology, 2010, 3, 315-322.	2.2	92
149	CX3CR1 Deficiency Alters Microglial Activation and Reduces Beta-Amyloid Deposition in Two Alzheimer's Disease Mouse Models. American Journal of Pathology, 2010, 177, 2549-2562.	3.8	403
150	Selective Chemokine Receptor Usage by Central Nervous System Myeloid Cells in CCR2-Red Fluorescent Protein Knock-In Mice. PLoS ONE, 2010, 5, e13693.	2.5	490
151	CCL2 Accelerates Microglia-Mediated $\hat{A^2}$ Oligomer Formation and Progression of Neurocognitive Dysfunction. PLoS ONE, 2009, 4, e6197.	2.5	100
152	Roles of IKK-β, IRF1, and p65 in the Activation of Chemokine Genes by Interferon-γ. Journal of Interferon and Cytokine Research, 2009, 29, 817-824.	1.2	37
153	Immunotherapy for Multiple Sclerosis. Archives of Neurology, 2009, 66, 1193-4.	4.5	3
154	AAV1/2-mediated CNS Gene Delivery of Dominant-negative CCL2 Mutant Suppresses Gliosis, β-amyloidosis, and Learning Impairment of APP/PS1 Mice. Molecular Therapy, 2009, 17, 803-809.	8.2	62
155	Imaging Correlates of Leukocyte Accumulation and CXCR4/CXCL12 in Multiple Sclerosis. Archives of Neurology, 2009, 66, 44-53.	4.5	63
156	Chapter 4 Double‣abel Nonradioactive In Situ Hybridization for the Analysis of Chemokine Receptor Expression in the Central Nervous System. Methods in Enzymology, 2009, 460, 91-103.	1.0	1
157	A Protective Role for ELR+ Chemokines during Acute Viral Encephalomyelitis. PLoS Pathogens, 2009, 5, e1000648.	4.7	53
158	α4 Integrin/FN-CS1 mediated leukocyte adhesion to brain microvascular endothelial cells under flow conditions. Journal of Neuroimmunology, 2009, 210, 92-99.	2.3	51
159	The roles of chemokine CXCL12 in embryonic and brain tumor angiogenesis. Seminars in Cancer Biology, 2009, 19, 111-115.	9.6	65
160	Localizing central nervous system immune surveillance: Meningeal antigenâ€presenting cells activate T cells during experimental autoimmune encephalomyelitis. Annals of Neurology, 2009, 65, 457-469.	5.3	230
161	Barrier to electrical storms. Nature, 2009, 457, 155-156.	27.8	38
162	Heterogeneous, Longitudinally Stable Molecular Signatures in Response to Interferonâ€Î². Annals of the New York Academy of Sciences, 2009, 1182, 58-68.	3.8	15

#	Article	IF	CITATIONS
163	A novel method for subarachnoid hemorrhage to induce vasospasm in mice. Journal of Neuroscience Methods, 2009, 183, 136-140.	2.5	32
164	Chemokines and Chemokine Receptors: Standing at the Crossroads of Immunobiology and Neurobiology. Immunity, 2009, 31, 711-721.	14.3	341
165	Recurrent varicella zoster virus myelopathy. Journal of the Neurological Sciences, 2009, 276, 196-198.	0.6	18
166	Microglial Physiology: Unique Stimuli, Specialized Responses. Annual Review of Immunology, 2009, 27, 119-145.	21.8	1,562
167	Imatinib attenuates skeletal muscle dystrophy in <i>mdx</i> mice. FASEB Journal, 2009, 23, 2539-2548.	0.5	90
168	Repopulation of cochlear macrophages in murine hematopoietic progenitor cell chimeras: The role of CX3CR1. Journal of Comparative Neurology, 2008, 506, 930-942.	1.6	64
169	CCL2 recruitment of ILâ€6â€producing CD11b ⁺ monocytes to the draining lymph nodes during the initiation of Th17â€dependent B cellâ€mediated autoimmunity. European Journal of Immunology, 2008, 38, 1877-1888.	2.9	49
170	Chemokines and chemokine receptors in the nervous system. Journal of Neuroimmunology, 2008, 198, 1-8.	2.3	4
171	Haploinsufficiency of utrophin gene worsens skeletal muscle inflammation and fibrosis in mdx mice. Journal of the Neurological Sciences, 2008, 264, 106-111.	0.6	69
172	Title is missing!. Journal of the Neurological Sciences, 2008, 264, 199.	0.6	0
173	Non-Cell-Autonomous Effects of Presenilin 1 Variants on Enrichment-Mediated Hippocampal Progenitor Cell Proliferation and Differentiation. Neuron, 2008, 59, 568-580.	8.1	159
174	Chemokines in and out of the central nervous system: much more than chemotaxis and inflammation. Journal of Leukocyte Biology, 2008, 84, 587-594.	3.3	93
175	Leukemia Inhibitory Factor Deficiency Modulates the Immune Response and Limits Autoimmune Demyelination: A New Role for Neurotrophic Cytokines in Neuroinflammation. Journal of Immunology, 2008, 180, 2204-2213.	0.8	42
176	Memory CD4 ⁺ T-Cell-Mediated Protection from Lethal Coronavirus Encephalomyelitis. Journal of Virology, 2008, 82, 12432-12440.	3.4	41
177	Scavenging roles of chemokine receptors: chemokine receptor deficiency is associated with increased levels of ligand in circulation and tissues. Blood, 2008, 112, 256-263.	1.4	127
178	PDGF Synergistically Enhances IFN-γ-Induced Expression of CXCL10 in Blood-Derived Macrophages: Implications for HIV Dementia. Journal of Immunology, 2007, 179, 2722-2730.	0.8	46
179	Requirement of Catalytically Active Tyk2 and Accessory Signals for the Induction of TRAIL mRNA by IFN- <i>β</i> . Journal of Interferon and Cytokine Research, 2007, 27, 767-780.	1.2	16
180	Novel interferon-β-induced gene expression in peripheral blood cells. Journal of Leukocyte Biology, 2007, 82, 1353-1360.	3.3	44

#	ARTICLE	IF	CITATIONS
181	Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14759-14764.	7.1	541
182	"Doing the locomotion―with the multistep paradigm. Blood, 2007, 109, 1342-1343.	1.4	4
183	Chemokines and Chemokine Receptors: Multipurpose Players in Neuroinflammation. International Review of Neurobiology, 2007, 82, 187-204.	2.0	138
184	"Thinking without thinking―about natalizumab and PML. Journal of the Neurological Sciences, 2007, 259, 50-52.	0.6	30
185	Natalizumab for Multiple Sclerosis. New England Journal of Medicine, 2007, 356, 2622-2629.	27.0	238
186	Inflammatory progressive multifocal leukoencephalopathy in human immunodeficiency virus-negative patients. Annals of Neurology, 2007, 62, 34-39.	5.3	46
187	Evidence for synaptic stripping by cortical microglia. Glia, 2007, 55, 360-368.	4.9	293
188	Chemokines and Chemokine Receptors in Neurological Disease: Raise, Retain, or Reduce?. Neurotherapeutics, 2007, 4, 590-601.	4.4	157
189	Assault on the guardian. Nature, 2007, 448, 421-422.	27.8	15
190	Microgliosis: the questions shape the answers. Nature Neuroscience, 2007, 10, 1507-1509.	14.8	87
191	Interferons at age 50: past, current and future impact on biomedicine. Nature Reviews Drug Discovery, 2007, 6, 975-990.	46.4	970
192	Inflammatory Cell Migration into the Central Nervous System: A Few New Twists on an Old Tale. Brain Pathology, 2007, 17, 243-250.	4.1	214
193	Neuroimmunotherapeutics Comes of Age. Neurotherapeutics, 2007, 4, 569-570.	4.4	2
194	CC Chemokine Receptor 2 is Protective Against Noise-Induced Hair Cell Death: Studies in CX3CR1+/GFP Mice. JARO - Journal of the Association for Research in Otolaryngology, 2006, 7, 361-372.	1.8	46
195	Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain, 2006, 129, 200-211.	7.6	485
196	The Many Roles of Chemokines and Chemokine Receptors in Inflammation. New England Journal of Medicine, 2006, 354, 610-621.	27.0	2,207
197	The expression and function of chemokines involved in CNS inflammation. Trends in Pharmacological Sciences, 2006, 27, 48-55.	8.7	260
198	A mighty mouse: building a better model of multiple sclerosis. Journal of Clinical Investigation, 2006, 116, 2313-2316.	8.2	22

#	Article	IF	CITATIONS
199	Chemokine Receptors as Biomarkers in Multiple Sclerosis. Disease Markers, 2006, 22, 227-233.	1.3	15
200	Control of microglial neurotoxicity by the fractalkine receptor. Nature Neuroscience, 2006, 9, 917-924.	14.8	1,334
201	Isolation of murine microglial cells for RNA analysis or flow cytometry. Nature Protocols, 2006, 1, 1947-1951.	12.0	212
202	Chemokines, mononuclear cells and the nervous system: heaven (or hell) is in the details. Current Opinion in Immunology, 2006, 18, 683-689.	5.5	100
203	CCR5 expression on monocytes and T cells: Modulation by transmigration across the blood–brain barrier in vitro. Cellular Immunology, 2006, 243, 19-29.	3.0	47
204	Determinants of CCL5-driven mononuclear cell migration across the blood–brain barrier. Implications for therapeutically modulating neuroinflammation. Journal of Neuroimmunology, 2006, 179, 132-144.	2.3	70
205	Astrocyte differentiation selectively upregulates CCL2/monocyte chemoattractant protein-1 in cultured human brain-derived progenitor cells. Glia, 2006, 53, 81-91.	4.9	47
206	Alterations in the oligodendrocyte lineage, myelin, and white matter in adult mice lacking the chemokine receptor CXCR2. Glia, 2006, 54, 471-483.	4.9	76
207	Modulating CCR2 and CCL2 at the blood–brain barrier: relevance for multiple sclerosis pathogenesis. Brain, 2006, 129, 212-223.	7.6	188
208	The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB Journal, 2006, 20, 896-905.	0.5	263
209	Severe Disease, Unaltered Leukocyte Migration, and Reduced IFN-Î ³ Production in CXCR3â [~] /â [~] Mice with Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2006, 176, 4399-4409.	0.8	142
210	Cutting Edge: The Silent Chemokine Receptor D6 Is Required for Generating T Cell Responses That Mediate Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2006, 177, 17-21.	0.8	70
211	A Novel Model of Demyelinating Encephalomyelitis Induced by Monocytes and Dendritic Cells. Journal of Immunology, 2006, 177, 6871-6879.	0.8	38
212	Interferon-Î ³ -inducible Protein (IP)-10 mRNA Stabilized by RNA-binding Proteins in Monocytes Treated with S100b. Journal of Biological Chemistry, 2006, 281, 31212-31221.	3.4	9
213	The Epstein-Barr virus oncoprotein latent membrane protein 1 induces expression of the chemokine IP-10: Importance of mRNA half-life regulation. International Journal of Cancer, 2005, 114, 598-605.	5.1	46
214	Astrocytes as antigen-presenting cells: expression of IL-12/IL-23. Journal of Neurochemistry, 2005, 95, 331-340.	3.9	119
215	Natalizumab and PML. Nature Neuroscience, 2005, 8, 1275-1275.	14.8	130
216	Comparison of ventricular and lumbar cerebrospinal fluid T cells in non-inflammatory neurological disorder (NIND) patients. Journal of Neuroimmunology, 2005, 163, 179-184.	2.3	40

#	Article	IF	CITATIONS
217	CCR5Δ32 polymorphism effects on CCR5 expression, patterns of immunopathology and disease course in multiple sclerosis. Journal of Neuroimmunology, 2005, 169, 137-143.	2.3	35
218	Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. Journal of Comparative Neurology, 2005, 489, 180-194.	1.6	281
219	Transgenic expression of CCL2 in the central nervous system prevents experimental autoimmune encephalomyelitis. Journal of Leukocyte Biology, 2005, 77, 229-237.	3.3	37
220	Selective Leukocyte Chemoattractants Emerge from the Primeval Sup(ernatants). Journal of Immunology, 2005, 175, 5567-5568.	0.8	4
221	Chemokines and chemokine receptors in inflammation of the CNS. Expert Review of Clinical Immunology, 2005, 1, 293-301.	3.0	8
222	Chemokine Receptor CXCR3: An Unexpected Enigma. Current Topics in Developmental Biology, 2005, 68, 149-181.	2.2	136
223	Overexpression of Monocyte Chemotactic Protein-1/CCL2 in β-Amyloid Precursor Protein Transgenic Mice Show Accelerated Diffuse β-Amyloid Deposition. American Journal of Pathology, 2005, 166, 1475-1485.	3.8	130
224	Taking Two TRAILS. Neuron, 2005, 46, 355-356.	8.1	8
225	Alternative and Accessory Pathways in the Regulation of IFN-β-Mediated Gene Expression. Journal of Interferon and Cytokine Research, 2005, 25, 788-798.	1.2	57
226	Steroid-responsive encephalopathy associated with autoimmune thyroiditis and primary CNS demyelination. Journal of the Neurological Sciences, 2005, 228, 3-5.	0.6	69
227	Title is missing!. Journal of the Neurological Sciences, 2005, 235, 77.	0.6	0
228	Fluid in the flute: Reversible hydromyelia. Journal of the Neurological Sciences, 2005, 236, 85-86.	0.6	3
229	Chronic expression of monocyte chemoattractant proteinâ€1 in the central nervous system causes delayed encephalopathy and impaired microglial function in mice. FASEB Journal, 2005, 19, 761-772.	0.5	124
230	The Activation Status of Neuroantigen-specific T Cells in the Target Organ Determines the Clinical Outcome of Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 2004, 199, 185-197.	8.5	163
231	Inhibitor of ÂB kinase is required to activate a subset of interferon Â-stimulated genes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7994-7998.	7.1	60
232	MCP-1 and CCR2 Contribute to Non-Lymphocyte-Mediated Brain Disease Induced by Fr98 Polytropic Retrovirus Infection in Mice: Role for Astrocytes in Retroviral Neuropathogenesis. Journal of Virology, 2004, 78, 6449-6458.	3.4	47
233	CXCR3 marks CD4+ memory T lymphocytes that are competent to migrate across a human brain microvascular endothelial cell layer. Journal of Neuroimmunology, 2004, 153, 150-157.	2.3	68
234	Analysis of leukocyte extravasation across the blood-brain barrier: Conceptual and technical aspects. Current Allergy and Asthma Reports, 2004, 4, 65-73.	5.3	25

#	Article	IF	CITATIONS
235	Enhanced axonal growth into a spinal cord contusion injury site in a strain of mouse (129X1/SvJ) with a diminished inflammatory response. Journal of Comparative Neurology, 2004, 474, 469-486.	1.6	66
236	Expression of Chemokine Receptors CCR1 and CCR5 Reflects Differential Activation of Mononuclear Phagocytes in Pattern II and Pattern III Multiple Sclerosis Lesions. Journal of Neuropathology and Experimental Neurology, 2004, 63, 262-273.	1.7	66
237	Expression of CCR2, CCR5, and CXCR3 by CD4+ T Cells is Stable During a 2-Year Longitudinal Study but Varies Widely Between Individuals. Journal of NeuroVirology, 2003, 9, 291-299.	2.1	13
238	Interferon- \hat{l}^2 1a does not reduce expression of CCR5 and CXCR3 on circulating T cells. Journal of Neuroimmunology, 2003, 141, 150-154.	2.3	11
239	Recovery from EAE is associated with decreased survival of encephalitogenic T cells in the CNS of B7-1/B7-2-deficient mice. European Journal of Immunology, 2003, 33, 2022-2032.	2.9	37
240	Snip-snip, kill-kill: truncated SDF-1 and HIV-associated neurodegeneration. Nature Neuroscience, 2003, 6, 1009-1011.	14.8	10
241	Three or more routes for leukocyte migration into the central nervous system. Nature Reviews Immunology, 2003, 3, 569-581.	22.7	934
242	CC Chemokine Receptor 8 in the Central Nervous System Is Associated with Phagocytic Macrophages. American Journal of Pathology, 2003, 162, 427-438.	3.8	59
243	Lysophosphatidylcholine regulates human microvascular endothelial cell expression of chemokines. Journal of Molecular and Cellular Cardiology, 2003, 35, 1375-1384.	1.9	116
244	The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Seminars in Immunology, 2003, 15, 23-32.	5.6	374
245	TNF-α Microinjection Upregulates Chemokines and Chemokine Receptors in the Central Nervous System Without Inducing Leukocyte Infiltration. Journal of Interferon and Cytokine Research, 2003, 23, 457-466.	1.2	35
246	Human cerebrospinal fluid central memory CD4 ⁺ T cells: Evidence for trafficking through choroid plexus and meninges via P-selectin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8389-8394.	7.1	486
247	Interleukin-6 Protects Anterior Horn Neurons from Lethal Virus-Induced Injury. Journal of Neuroscience, 2003, 23, 481-492.	3.6	67
248	CCL2 transgene expression in the central nervous system directs diffuse infiltration of CD45(high)CD11b(+) monocytes and enhanced Theiler's murine encephalomyelitis virus-induced demyelinating disease. Journal of NeuroVirology, 2003, 9, 623-36.	2.1	24
249	Interferon Signaling Is Dependent on Specific Tyrosines Located within the Intracellular Domain of IFNAR2c. Journal of Biological Chemistry, 2002, 277, 1493-1499.	3.4	43
250	A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain, 2002, 125, 1450-1461.	7.6	1,078
251	Requirement of Phosphoinositide 3-Kinase and Akt for Interferon-β-mediated Induction of the β-R1(SCYB11) Gene. Journal of Biological Chemistry, 2002, 277, 38456-38461.	3.4	39
252	VCAM-1-Positive Microglia Target Oligodendrocytes at the Border of Multiple Sclerosis Lesions. Journal of Neuropathology and Experimental Neurology, 2002, 61, 539-546.	1.7	80

#	Article	IF	CITATIONS
253	Chemokines and chemokine receptors in inflammatory demyelinating neuropathies: a central role for IPâ€10. Brain, 2002, 125, 823-834.	7.6	139
254	Axon Loss in the Spinal Cord Determines Permanent Neurological Disability in an Animal Model of Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2002, 61, 23-32.	1.7	258
255	Experimental Autoimmune Encephalomyelitis: CC Chemokine Receptor Expression by Trafficking Cells. Journal of Autoimmunity, 2002, 19, 175-181.	6.5	40
256	The Chemokine Receptor CXCR2 Controls Positioning of Oligodendrocyte Precursors in Developing Spinal Cord by Arresting Their Migration. Cell, 2002, 110, 373-383.	28.9	337
257	Pertussis Toxin-Induced Reversible Encephalopathy Dependent on Monocyte Chemoattractant Protein-1 Overexpression in Mice. Journal of Neuroscience, 2002, 22, 10633-10642.	3.6	63
258	Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system. Journal of Neuroimmunology, 2002, 127, 59-68.	2.3	231
259	Treatment of experimental autoimmune encephalomyelitis with the chemokine receptor antagonist Met-RANTES. Journal of Neuroimmunology, 2002, 128, 16-22.	2.3	74
260	Monocyte recruitment and myelin removal are delayed following spinal cord injury in mice with CCR2 chemokine receptor deletion. Journal of Neuroscience Research, 2002, 68, 691-702.	2.9	107
261	Immunological Concerns with Bioengineering Approaches. Annals of the New York Academy of Sciences, 2002, 961, 323-330.	3.8	16
262	Chemokines in Neurological Trauma Models. Annals of the New York Academy of Sciences, 2002, 961, 346-349.	3.8	30
263	Absence of Monocyte Chemoattractant Protein 1 in Mice Leads to Decreased Local Macrophage Recruitment and Antigen-Specific T Helper Cell Type 1 Immune Response in Experimental Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 2001, 193, 713-726.	8.5	553
264	CCR1+/CCR5+ Mononuclear Phagocytes Accumulate in the Central Nervous System of Patients with Multiple Sclerosis. American Journal of Pathology, 2001, 159, 1701-1710.	3.8	238
265	P2X7-Like Receptor Activation in Astrocytes Increases Chemokine Monocyte Chemoattractant Protein-1 Expression via Mitogen-Activated Protein Kinase. Journal of Neuroscience, 2001, 21, 7135-7142.	3.6	212
266	Monocyte chemoattractant protein (MCP)-1 is rapidly expressed by sympathetic ganglion neurons following axonal injury. NeuroReport, 2001, 12, 601-606.	1.2	59
267	Constitutive Expression of Growth-related Oncogene and Its Receptor in Oligodendrogliomas. Neurosurgery, 2001, 48, 864-874.	1.1	43
268	Investigating Chemokines and Chemokine Receptors in Patients With Multiple Sclerosis. Archives of Neurology, 2001, 58, 1975.	4.5	97
269	TNF-α down-regulates CXCR4 expression in primary murine astrocytes. Brain Research, 2001, 888, 1-10.	2.2	54
270	Regulation of monocyte chemoattractant protein (MCP)â€1 transcription by interferonâ€gamma (IFNâ€Î³) in human astrocytoma cells: postinduction refractory state of the gene, governed by its upstream elements. FASEB Journal, 2001, 15, 383-392.	0.5	24

#	Article	IF	CITATIONS
271	Human Parainfluenza Virus Type 3 Inhibits Gamma Interferon-Induced Major Histocompatibility Complex Class II Expression Directly and by Inducing Alpha/Beta Interferon. Journal of Virology, 2001, 75, 1124-1131.	3.4	19
272	A Real-Time Insight Into Disease Progression and the Role of Axonal Injury in Multiple Sclerosis. Archives of Neurology, 2001, 58, 37-9.	4.5	15
273	A Role for NF-κB in the Induction of β-R1 by Interferon-β. Journal of Biological Chemistry, 2001, 276, 44365-44368.	3.4	20
274	TNF-α mediates SDF-1α–induced NF-κB activation and cytotoxic effects in primary astrocytes. Journal of Clinical Investigation, 2001, 108, 425-435.	8.2	113
275	Chemokines and chemokine receptors in inflammation of the nervous system: manifold roles and exquisite regulation. Immunological Reviews, 2000, 177, 52-67.	6.0	224
276	Matrix metalloprotease-9 release from monocytes increases as a function of differentiation: implications for neuroinflammation and neurodegeneration. Journal of Neuroimmunology, 2000, 109, 221-227.	2.3	41
277	Sequential expression of chemokines in experimental autoimmune neuritis. Journal of Neuroimmunology, 2000, 110, 121-129.	2.3	75
278	Elevated Levels of the Chemokine GRO-1 Correlate with Elevated Oligodendrocyte Progenitor Proliferation in the <i>Jimpy</i> Mutant. Journal of Neuroscience, 2000, 20, 2609-2617.	3.6	108
279	Role of the Intracellular Domain of the Human Type I Interferon Receptor 2 Chain (IFNAR2c) in Interferon Signaling. Journal of Biological Chemistry, 2000, 275, 23981-23985.	3.4	19
280	Role of Chemokines, Neuronal Projections, and the Blood-Brain Barrier in the Enhancement of Cerebral EAE Following Focal Brain Damage. Journal of Neuropathology and Experimental Neurology, 2000, 59, 1031-1043.	1.7	38
281	Peroxisome Proliferator-Activated Receptor-Î ³ Activators Inhibit IFN-Î ³ -Induced Expression of the T Cell-Active CXC Chemokines IP-10, Mig, and I-TAC in Human Endothelial Cells. Journal of Immunology, 2000, 164, 6503-6508.	0.8	285
282	Surprising Pleiotropy of Nerve Growth Factor in the Treatment of Experimental Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 2000, 191, 1625-1630.	8.5	27
283	Chemokine receptor antagonism as a new therapy for multiple sclerosis. Expert Opinion on Investigational Drugs, 2000, 9, 1079-1097.	4.1	41
284	CXC Chemokine Receptors Expression during Chronic Relapsing Experimental Autoimmune Encephalomyelitis. Annals of the New York Academy of Sciences, 2000, 917, 135-144.	3.8	33
285	A Fundamentally New View of Multiple Sclerosis. International Journal of MS Care, 2000, 2, 2-8.	1.0	2
286	Caveolin-3 Upregulation Activates β-Secretase–Mediated Cleavage of the Amyloid Precursor Protein in Alzheimer's Disease. Journal of Neuroscience, 1999, 19, 6538-6548.	3.6	77
287	Catalytically Active TYK2 Is Essential for Interferon- $\hat{1}^2$ -mediated Phosphorylation of STAT3 and Interferon- $\hat{1}^\pm$ Receptor-1 (IFNAR-1) but Not for Activation of Phosphoinositol 3-Kinase. Journal of Biological Chemistry, 1999, 274, 32507-32511.	3.4	63
288	Sentries at the gate: chemokines and the blood-brain barrier. Journal of NeuroVirology, 1999, 5, 623-634.	2.1	37

#	Article	IF	CITATIONS
289	Tumor Necrosis Factor-alpha Signals to the IFN-gamma Receptor Complex to Increase Stat1alpha Activation. Journal of Interferon and Cytokine Research, 1999, 19, 731-740.	1.2	18
290	Induction of β-R1/I-TAC by Interferon-β Requires Catalytically Active TYK2. Journal of Biological Chemistry, 1999, 274, 1891-1897.	3.4	29
291	Cerebrospinal fluid abnormalities in a phase III trial of Avonex® (IFNβ-1a) for relapsing multiple sclerosis1Studies supported by the National Multiple Sclerosis Society (grants RG2019, RG2827); the NINDS (NS26321); and Biogen Inc.1. Journal of Neuroimmunology, 1999, 93, 8-14.	2.3	95
292	Treatment with BBB022A or rolipram stabilizes the blood-brain barrier in experimental autoimmune encephalomyelitis: an additional mechanism for the therapeutic effect of type IV phosphodiesterase inhibitors. Journal of Neuroimmunology, 1999, 97, 119-128.	2.3	51
293	Mechanisms of inflammation in MS tissue: adhesion molecules and chemokines. Journal of Neuroimmunology, 1999, 98, 57-68.	2.3	152
294	Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. Journal of Clinical Investigation, 1999, 103, 807-815.	8.2	919
295	Chemokine expression in GKO mice (lacking interferon-gamma) with experimental autoimmune encephalomyelitis. Journal of NeuroVirology, 1999, 5, 95-101.	2.1	70
296	Axonal pathology in multiple sclerosis: relationship to neurologic disability. Current Opinion in Neurology, 1999, 12, 295-302.	3.6	425
297	Selective chemokine mRNA accumulation in the rat spinal cord after contusion injury. Journal of Neuroscience Research, 1998, 53, 368-376.	2.9	186
298	Regulation of human IP-10 gene expression in astrocytoma cells by inflammatory cytokines. , 1998, 54, 169-180.		69
299	Do chemokines mediate leukocyte recruitment in post-traumatic CNS inflammation?. Trends in Neurosciences, 1998, 21, 154-159.	8.6	184
300	Axonal Transection in the Lesions of Multiple Sclerosis. New England Journal of Medicine, 1998, 338, 278-285.	27.0	3,776
301	Cellular Responses to Interferons and Other Cytokines: The JAK–STAT Paradigm. New England Journal of Medicine, 1998, 338, 616-618.	27.0	73
302	Etiology and Pathogenesis of Multiple Sclerosis. Seminars in Neurology, 1998, 18, 287-294.	1.4	43
303	The Chemokine Growth-Regulated Oncogene-α Promotes Spinal Cord Oligodendrocyte Precursor Proliferation. Journal of Neuroscience, 1998, 18, 10457-10463.	3.6	208
304	Expression of Chemokines RANTES, MIP-1α and GRO-α Correlates with Inflammation in Acute Experimental Autoimmune Encephalomyelitis. NeuroImmunoModulation, 1998, 5, 166-171.	1.8	104
305	Chemokines and chemokine receptors in model neurological pathologies: Molecular and immunocytochemical approaches. Methods in Enzymology, 1997, 287, 319-348.	1.0	21
306	Chemokines in neurological disease models: correlation between chemokine expression patterns and inflammatory pathology. Journal of Leukocyte Biology, 1997, 62, 645-652.	3.3	81

#	Article	IF	CITATIONS
307	[13] Murine experimental autoimmune encephalomyelitis: A model of immune-mediated inflammation and multiple sclerosis. Methods in Enzymology, 1997, 288, 182-190.	1.0	23
308	Management of Multiple Sclerosis. New England Journal of Medicine, 1997, 337, 1604-1611.	27.0	179
309	Characterization of β-R1, a Gene That Is Selectively Induced by Interferon β (IFN-β) Compared with IFN-α. Journal of Biological Chemistry, 1996, 271, 22878-22884.	3.4	168
310	Unusual Long-Standing Gd-DTPA Enhancement in a Chronic Progressive Myelopathy. Journal of Computer Assisted Tomography, 1995, 19, 649-651.	0.9	1
311	The interferons: Biological effects, mechanisms of action, and use in multiple sclerosis. Annals of Neurology, 1995, 37, 7-15.	5.3	214
312	Do Chemokines Mediate Inflammatory Cell Invasion of the Central Nervous System Parenchyma?. Brain Pathology, 1994, 4, 135-143.	4.1	67
313	The immunology of multiple sclerosis. Current Opinion in Neurology, 1994, 7, 242-249.	3.6	17
314	Interferon-Induced Antiviral Actions and Their Regulation. Advances in Virus Research, 1993, 42, 57-102.	2.1	315
315	Astrocyte expression of mRNA encoding cytokines IPâ€10 and JE/MCPâ€1 in experimental autoimmune encephalomyelitis. FASEB Journal, 1993, 7, 592-600.	0.5	484
316	Monocytes in active multiple sclerosis: intact regulation of HLA-DR density in vitro despite decreased HLA-DR density in vivo. Journal of Neuroimmunology, 1992, 37, 169-176.	2.3	20
317	Transforming growth factor-β1 differentially regulates proliferation and MHC class-II antigen expression in forebrain and brainstem astrocyte primary cultures. Brain Research, 1992, 585, 229-236.	2.2	47
318	Interferon-Î ² specifically inhibits interferon-Î ³ -induced class II major histocompatibility complex gene transcription in a human astrocytoma cell line. Journal of Neuroimmunology, 1991, 33, 103-112.	2.3	88
319	Human astrocytes proliferate in response to tumor necrosis factor alpha. Journal of Neuroimmunology, 1990, 30, 239-243.	2.3	121
320	Organization and expression of 5S rRNA genes in the parasitic nematode,Brugia malayi. Nucleic Acids Research, 1989, 17, 3773-3782.	14.5	12
321	Interferon-β impairs induction of HLA-DR antigen expression in cultured adult human astrocytes. Journal of Neuroimmunology, 1989, 23, 45-53.	2.3	100
322	Priming of influenza mRNA transcription is inhibited in CHO cells treated with the methylation inhibitor, Neplanocin A. Antiviral Research, 1987, 7, 317-327.	4.1	36
323	Enhanced DNA synthesis of human glial cells exposed to human leukocyte products. Journal of Neuroimmunology, 1985, 10, 151-158.	2.3	34