Jean-Michel Gaillard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7264341/publications.pdf

Version: 2024-02-01

300 21,278 71 131 papers citations h-index g-index

311 311 311 14167
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology and Evolution, 2005, 20, 503-510.	4.2	2,279
2	Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends in Ecology and Evolution, 1998, 13, 58-63.	4.2	1,102
3	Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology. Ageing Research Reviews, 2013, 12, 214-225.	5.0	548
4	TEMPORAL VARIATION IN SURVIVAL OF MAMMALS: A CASE OF ENVIRONMENTAL CANALIZATION?. Ecology, 2003, 84, 3294-3306.	1.5	451
5	The home-range concept: are traditional estimators still relevant with modern telemetry technology?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2221-2231.	1.8	389
6	LONGEVITY CAN BUFFER PLANT AND ANIMAL POPULATIONS AGAINST CHANGING CLIMATIC VARIABILITY. Ecology, 2008, 89, 19-25.	1.5	386
7	AGE-SPECIFIC SURVIVAL IN FIVE POPULATIONS OF UNGULATES: EVIDENCE OF SENESCENCE. Ecology, 1999, 80, 2539-2554.	1.5	378
8	Senescence rates are determined by ranking on the fast–slow lifeâ€history continuum. Ecology Letters, 2008, 11, 664-673.	3.0	317
9	Temporal and spatial development of red deer harvesting in Europe: biological and cultural factors. Journal of Applied Ecology, 2006, 43, 721-734.	1.9	282
10	Early-late life trade-offs and the evolution of ageing in the wild. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150209.	1.2	280
11	Habitat–performance relationships: finding the right metric at a given spatial scale. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2255-2265.	1.8	250
12	Roe Deer Survival Patterns: A Comparative Analysis of Contrasting Populations. Journal of Animal Ecology, 1993, 62, 778.	1.3	249
13	Successful sons or advantaged daughters? The Trivers–Willard model and sex-biased maternal investment in ungulates. Trends in Ecology and Evolution, 1999, 14, 229-234.	4.2	240
14	EFFECTS OF AGE, SEX, DISEASE, AND DENSITY ON SURVIVAL OF BIGHORN SHEEP. Ecology, 1997, 78, 1019-1032.	. 1.5	231
15	Early survival in roe deer: causes and consequences of cohort variation in two contrasted populations. Oecologia, 1997, 112, 502-513.	0.9	231
16	Body mass and individual fitness in female ungulates: bigger is not always better. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 471-477.	1.2	230
17	Memory keeps you at home: a mechanistic model for home range emergence. Oikos, 2009, 118, 641-652.	1.2	228
18	Indicators of ecological change: new tools for managing populations of large herbivores. Journal of Applied Ecology, 2007, 44, 634-643.	1.9	225

#	Article	IF	Citations
19	Individual variation in reproductive costs of reproduction: highâ€quality females always do better. Journal of Animal Ecology, 2009, 78, 143-151.	1.3	213
20	Generation Time: A Reliable Metric to Measure Lifeâ€History Variation among Mammalian Populations. American Naturalist, 2005, 166, 119-123.	1.0	199
21	Spring Normalized Difference Vegetation Index (NDVI) predicts annual variation in timing of peak faecal crude protein in mountain ungulates. Journal of Applied Ecology, 2009, 46, 582-589.	1.9	175
22	Sex differences in adult lifespan and aging rates of mortality across wild mammals. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8546-8553.	3.3	170
23	Effects of age and body weight on the proportion of females breeding in a population of roe deer (<i>Capreolus capreolus (i>). Canadian Journal of Zoology, 1992, 70, 1541-1545.</i>	0.4	169
24	Fitness costs of reproduction depend on life speed: empirical evidence from mammalian populations. Ecology Letters, 2010, 13, 915-935.	3.0	169
25	Variable age structure and apparent density dependence in survival of adult ungulates. Journal of Animal Ecology, 2003, 72, 640-649.	1.3	166
26	Factors affecting maternal care in an income breeder, the European roe deer. Journal of Animal Ecology, 2000, 69, 672-682.	1.3	165
27	Mismatch Between Birth Date and Vegetation Phenology Slows the Demography of Roe Deer. PLoS Biology, 2014, 12, e1001828.	2.6	161
28	Decomposing the variation in population growth into contributions from multiple demographic rates. Journal of Animal Ecology, 2005, 74, 789-801.	1.3	158
29	How Life History Influences Population Dynamics in Fluctuating Environments. American Naturalist, 2013, 182, 743-759.	1.0	152
30	Stochastic predation events and population persistence in bighorn sheep. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1537-1543.	1.2	149
31	Using a proxy of plant productivity (NDVI) to find key periods for animal performance: the case of roe deer. Oikos, 2006, 112, 565-572.	1.2	148
32	Variations in adult body mass in roe deer: the effects of population density at birth and of habitat quality. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 747-753.	1.2	147
33	Reproductive senescence: new perspectives in the wild. Biological Reviews, 2017, 92, 2182-2199.	4.7	145
34	Assessing habitat selection using multivariate statistics: Some refinements of the ecological-niche factor analysis. Ecological Modelling, 2008, 211, 233-240.	1.2	144
35	Individual quality, earlyâ€life conditions, and reproductive success in contrasted populations of large herbivores. Ecology, 2009, 90, 1981-1995.	1.5	140
36	How does environmental variation influence body mass, body size, and body condition? Roe deer as a case study. Ecography, 2006, 29, 301-308.	2.1	138

#	Article	lF	CITATIONS
37	Antler Size Provides an Honest Signal of Male Phenotypic Quality in Roe Deer. American Naturalist, 2007, 169, 481-493.	1.0	138
38	From stochastic environments to life histories and back. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1499-1509.	1.8	134
39	Comparative analyses of longevity and senescence reveal variable survival benefits of living in zoos across mammals. Scientific Reports, 2016, 6, 36361.	1.6	134
40	What shapes Eurasian lynx distribution in human dominated landscapes: selecting prey or avoiding people?. Ecography, 2009, 32, 683-691.	2.1	133
41	Influence of harvesting pressure on demographic tactics: implications for wildlife management. Journal of Applied Ecology, 2011, 48, 835-843.	1.9	131
42	Patterns of body mass senescence and selective disappearance differ among three species of free-living ungulates. Ecology, 2011, 92, 1936-1947.	1.5	124
43	Causes of sex-biased adult survival in ungulates: sexual size dimorphism, mating tactic or environment harshness?. Oikos, 2003, 101, 376-384.	1.2	122
44	Movement is the glue connecting home ranges and habitat selection. Journal of Animal Ecology, 2016, 85, 21-31.	1.3	116
45	Data gaps and opportunities for comparative and conservation biology. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9658-9664.	3.3	115
46	Pulsed resources and climateâ€induced variation in the reproductive traits of wild boar under high hunting pressure. Journal of Animal Ecology, 2009, 78, 1278-1290.	1.3	112
47	SELECTIVE HARVESTING AND HABITAT LOSS PRODUCE LONGâ€TERM LIFE HISTORY CHANGES IN A MOUFLON POPULATION. Ecological Applications, 2007, 17, 1607-1618.	1.8	109
48	A slow life in hell or a fast life in heaven: demographic analyses of contrasting roe deer populations. Journal of Animal Ecology, 2009, 78, 585-594.	1.3	109
49	Cohort effects and deer population dynamics. Ecoscience, 2003, 10, 412-420.	0.6	104
50	Importance of Accounting for Detection Heterogeneity When Estimating Abundance: the Case of French Wolves. Conservation Biology, 2010, 24, 621-626.	2.4	104
51	Heterogeneity in individual quality overrides costs of reproduction in female reindeer. Oecologia, 2008, 156, 237-247.	0.9	103
52	Multiple causes of sexual segregation in European red deer: enlightenments from varying breeding phenology at high and low latitude. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 883-892.	1,2	102
53	Good reindeer mothers live longer and become better in raising offspring. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1239-1244.	1,2	102
54	Cohort effects in red squirrels: the influence of density, food abundance and temperature on future survival and reproductive success. Journal of Animal Ecology, 2008, 77, 305-314.	1.3	100

#	Article	IF	CITATIONS
55	Functional analysis of Normalized Difference Vegetation Index curves reveals overwinter mule deer survival is driven by both spring and autumn phenology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130196.	1.8	97
56	Body Mass of Roe Deer Fawns during Winter in 2 Contrasting Populations. Journal of Wildlife Management, 1996, 60, 29.	0.7	96
57	Predation, individual variability and vertebrate population dynamics. Oecologia, 2011, 167, 305-314.	0.9	96
58	The Risk of Flawed Inference in Evolutionary Studies When Detectability Is Less than One. American Naturalist, 2008, 172, 441-448.	1.0	93
59	What shapes intraâ€specific variation in home range size? A case study of female roe deer. Oikos, 2009, 118, 1299-1306.	1.2	93
60	Age-specific changes in different components of reproductive output in female reindeer: terminal allocation or senescence?. Oecologia, 2010, 162, 261-271.	0.9	92
61	Ageâ€specific variation in survival, reproductive success and offspring quality in red squirrels: evidence of senescence. Oikos, 2008, 117, 1406-1416.	1.2	91
62	The Williams' legacy: A critical reappraisal of his nine predictions about the evolution of senescence. Evolution; International Journal of Organic Evolution, 2017, 71, 2768-2785.	1.1	90
63	SENESCENCE IN NATURAL POPULATIONS OF MAMMALS: A REANALYSIS. Evolution; International Journal of Organic Evolution, 1994, 48, 509-516.	1.1	88
64	How does climate change influence demographic processes of widespread species? Lessons from the comparative analysis of contrasted populations of roe deer. Ecology Letters, 2013, 16, 48-57.	3.0	88
65	Causes and consequences of variation in offspring body mass: metaâ€analyses in birds and mammals. Biological Reviews, 2018, 93, 1-27.	4.7	88
66	Sex- and age-dependent effects of population density on life history traits of red deer Cervus elaphus in a temperate forest. Ecography, 2002, 25, 446-458.	2.1	87
67	Population density and small-scale variation in habitat quality affect phenotypic quality in roe deer. Oecologia, 2001, 128, 400-405.	0.9	85
68	Individual heterogeneity and capture–recapture models: what, why and how?. Oikos, 2018, 127, 664-686.	1.2	84
69	Lasting effects of conditions at birth on moose body mass. Ecography, 2004, 27, 677-687.	2.1	83
70	The Demographic Buffering Hypothesis: Evidence and Challenges. Trends in Ecology and Evolution, 2020, 35, 523-538.	4.2	83
71	Sex gap in aging and longevity: can sex chromosomes play a role?. Biology of Sex Differences, 2018, 9, 33.	1.8	82
72	Variation in growth form and precocity at birth in eutherian mammals. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 859-868.	1,2	80

#	Article	IF	Citations
73	Sex- and age-specific survival of the highly dimorphic Alpine ibex: evidence for a conservative life-history tactic. Journal of Animal Ecology, 2007, 76, 679-686.	1.3	80
74	Fitness consequences of environmental conditions at different life stages in a long-lived vertebrate. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140276.	1.2	80
75	Best squirrels trade a long life for an early reproduction. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2369-2374.	1.2	79
76	Conditionâ€dependent natal dispersal in a large herbivore: heavier animals show a greater propensity to disperse and travel further. Journal of Animal Ecology, 2012, 81, 1327-1327.	1.3	77
77	Modeling Adaptive and Nonadaptive Responses of Populations to Environmental Change. American Naturalist, 2017, 190, 313-336.	1.0	76
78	Selecting Habitat to Survive: The Impact of Road Density on Survival in a Large Carnivore. PLoS ONE, 2013, 8, e65493.	1.1	75
79	Ecological correlates of home-range size in spring–summer for female roe deer (Capreolus capreolus) Tj ETQq1	1.0.78431 0.8	.4.rgBT /Ov
80	Survival costs of reproduction vary with age in North American red squirrels. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1129-1135.	1.2	74
81	HIGH HUNTING PRESSURE SELECTS FOR EARLIER BIRTH DATE: WILD BOAR AS A CASE STUDY. Evolution; International Journal of Organic Evolution, 2011, 65, 3100-3112.	1.1	74
82	Estimating demographic parameters using hidden process dynamic models. Theoretical Population Biology, 2012, 82, 307-316.	0.5	73
83	Effects of Hurricane Lothar on the Population Dynamics of European Roe Deer. Journal of Wildlife Management, 2003, 67, 767.	0.7	72
84	Maternal and individual effects in selection of bed sites and their consequences for fawn survival at different spatial scales. Oecologia, 2009, 159, 669-678.	0.9	70
85	Does sexual selection shape sex differences in longevity and senescence patterns across vertebrates? A review and new insights from captive ruminants. Evolution; International Journal of Organic Evolution, 2015, 69, 3123-3140.	1.1	70
86	Sexâ€specific demography and generalization of the Trivers–Willard theory. Nature, 2015, 526, 249-252.	13.7	69
87	What limits the Serengeti zebra population?. Oecologia, 2004, 140, 523-532.	0.9	67
88	Can we use the youngÂ:Âfemale ratio to infer ungulate population dynamics? An empirical test using red deer Cervus elaphusÂas a model. Journal of Applied Ecology, 2005, 42, 361-370.	1.9	66
89	Age at the onset of senescence in birds and mammals is predicted by early-life performance. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2849-2856.	1.2	66
90	The response of fawn survival to changes in habitat quality varies according to cohort quality and spatial scale. Journal of Animal Ecology, 2005, 74, 972-981.	1.3	64

#	Article	IF	CITATIONS
91	Comparing free-ranging and captive populations reveals intra-specific variation in aging rates in large herbivores. Experimental Gerontology, 2013, 48, 162-167.	1.2	63
92	Litter size and fetal sex ratio adjustment in a highly polytocous species: the wild boar. Behavioral Ecology, 2007, 18, 427-432.	1.0	61
93	Density-dependent responses of fawn cohort body mass in two contrasting roe deer populations. Oecologia, 2006, 146, 521-530.	0.9	60
94	Mammal trap efficiency during the fragmentation by flooding of a neotropical rain forest in French Guiana. Journal of Tropical Ecology, 2000, 16, 841-851.	0.5	59
95	Decreasing litter size of marmots over time: a life history response to climate change?. Ecology, 2013, 94, 580-586.	1.5	59
96	Female red squirrels fit Williams' hypothesis of increasing reproductive effort with increasing age. Journal of Animal Ecology, 2007, 76, 1192-1201.	1.3	58
97	Influence of Life-History Tactics on Transient Dynamics: A Comparative Analysis across Mammalian Populations. American Naturalist, 2014, 184, 673-683.	1.0	58
98	High red deer density depresses body mass of roe deer fawns. Oecologia, 2010, 163, 91-97.	0.9	57
99	AGE AND DENSITY MODIFY THE EFFECTS OF HABITAT QUALITY ON SURVIVAL AND MOVEMENTS OF ROE DEER. Ecology, 2003, 84, 3307-3316.	1.5	56
100	Survival of Wild Boars in a Variable Environment: Unexpected Life-history Variation in an Unusual Ungulate. Journal of Mammalogy, 2008, 89, 1113-1123.	0.6	56
101	HETEROZYGOSITY-FITNESS CORRELATIONS REVEALED BY NEUTRAL AND CANDIDATE GENE MARKERS IN ROE DEER FROM A LONG-TERM STUDY. Evolution; International Journal of Organic Evolution, 2009, 63, 403-417.	1.1	56
102	Early life expenditure in sexual competition is associated with increased reproductive senescence in male red deer. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140792.	1.2	56
103	A SUBSTANTIAL ENERGETIC COST TO MALE REPRODUCTION IN A SEXUALLY DIMORPHIC UNGULATE. Ecology, 2005, 86, 2154-2163.	1.5	55
104	Are abundance indices derived from spotlight counts reliable to monitor red deer Cervus elaphus populations?. Wildlife Biology, 2010, 16, 77-84.	0.6	55
105	Kilometric index as biological indicator for monitoring forest roe deer populations. Acta Theriologica, 1991, 36, 315-328.	1.1	55
106	Spatial variation in springtime food resources influences the winter body mass of roe deer fawns. Oecologia, 2003, 137, 363-369.	0.9	54
107	Senescence in Natural Populations of Mammals: A Reanalysis. Evolution; International Journal of Organic Evolution, 1994, 48, 509.	1.1	53
108	Making use of harvest information to examine alternative management scenarios: a body weightâ€structured model for wild boar. Journal of Applied Ecology, 2012, 49, 833-841.	1.9	53

#	Article	IF	Citations
109	The diversity of population responses to environmental change. Ecology Letters, 2019, 22, 342-353.	3.0	52
110	Adult survival pattern of the sexually dimorphic Alpine ibex (Capra ibex ibex). Canadian Journal of Zoology, 1997, 75, 75-79.	0.4	51
111	Assessing whether mortality is additive using marked animals: a Bayesian state–space modeling approach. Ecology, 2010, 91, 1916-1923.	1.5	51
112	Reproductive output of female mouflon (Ovis gmelini musimon \tilde{A} — Ovis sp.): a comparative analysis. Journal of Zoology, 2005, 266, 65-71.	0.8	50
113	Sex-specific Growth in Alpine Chamois. Journal of Mammalogy, 2009, 90, 954-960.	0.6	49
114	The influence of birth date via body mass on individual fitness in a long-lived mammal. Ecology, 2015, 96, 1516-1528.	1.5	49
115	Pollen limitation as a main driver of fruiting dynamics in oak populations. Ecology Letters, 2019, 22, 98-107.	3.0	48
116	Immune Phenotype and Body Condition in Roe Deer: Individuals with High Body Condition Have Different, Not Stronger Immunity. PLoS ONE, 2012, 7, e45576.	1.1	47
117	Population abundance and early spring conditions determine variation in body mass of juvenile chamois. Journal of Mammalogy, 2011, 92, 1112-1117.	0.6	46
118	High Juvenile Mortality Is Associated with Sex-Specific Adult Survival and Lifespan in Wild Roe Deer. Current Biology, 2015, 25, 759-763.	1.8	46
119	Variation in adult body mass of roe deer: early environmental conditions influence early and late body growth of females. Ecology, 2013, 94, 1805-1814.	1.5	45
120	An integrative view of senescence in nature. Functional Ecology, 2020, 34, 4-16.	1.7	45
121	Changes in horn size of Stone's sheep over four decades correlate with trophy hunting pressure. Ecological Applications, 2016, 26, 309-321.	1.8	44
122	The cost of growing large: costs of postâ€weaning growth on body mass senescence in a wild mammal. Oikos, 2017, 126, 1329-1338.	1.2	44
123	Is sex-biased maternal care limited by total maternal expenditure in polygynous ungulates?. Behavioral Ecology and Sociobiology, 1995, 37, 311-319.	0.6	43
124	A Test of Long-Term Fecal Nitrogen Monitoring to Evaluate Nutritional Status in Bighorn Sheep. Journal of Wildlife Management, 2003, 67, 477.	0.7	43
125	Revisiting the allometry of antlers among deer species: male–male sexual competition as a driver. Oikos, 2011, 120, 601-606.	1.2	43
126	Reproductive allocation in pulsed-resource environments: a comparative study in two populations of wild boar. Oecologia, 2017, 183, 1065-1076.	0.9	43

#	Article	IF	CITATIONS
127	Contradictory findings in studies of sex ratio variation in roe deer (Capreolus capreolus). Behavioral Ecology and Sociobiology, 1999, 45, 339-348.	0.6	42
128	The effects of hurricane Lothar on habitat use of roe deer. Forest Ecology and Management, 2004, 195, 237-242.	1.4	42
129	Successes and challenges of long-term field studies of marked ungulates. Journal of Mammalogy, 2017, 98, 612-620.	0.6	42
130	Bigger teeth for longer life? Longevity and molar height in two roe deer populations. Biology Letters, 2007, 3, 268-270.	1.0	41
131	Diversification of the eutherian placenta is associated with changes in the pace of life. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7760-7765.	3.3	41
132	Predator-driven component Allee effects in a wild ungulate. Ecology Letters, 2011, 14, 358-363.	3.0	40
133	Age-Specific Variation in Male Breeding Success of a Territorial Ungulate Species, the European Roe Deer. Journal of Mammalogy, 2009, 90, 661-665.	0.6	39
134	TESTING SEXUAL SEGREGATION AND AGGREGATION: OLD WAYS ARE BEST. Ecology, 2007, 88, 3202-3208.	1.5	38
135	Detecting population heterogeneity in effects of North Atlantic Oscillations on seabird body condition: get into the rhythm. Oikos, 2010, 119, 1526-1536.	1.2	38
136	Male survival patterns do not depend on male allocation to sexual competition in large herbivores. Behavioral Ecology, 2013, 24, 421-428.	1.0	38
137	Evidence of reduced individual heterogeneity in adult survival of long-lived species. Evolution; International Journal of Organic Evolution, 2016, 70, 2909-2914.	1.1	38
138	Assessing the intensity of sexual selection on male body mass and antler length in roe deer Capreolus capreolus: is bigger better in a weakly dimorphic species?. Oikos, 2010, 119, 1484-1492.	1.2	37
139	Stick or twist: roe deer adjust their flight behaviour to the perceived trade-off between risk and reward. Animal Behaviour, 2017, 124, 35-46.	0.8	37
140	Stay home, stay safeâ€"Site familiarity reduces predation risk in a large herbivore in two contrasting study sites. Journal of Animal Ecology, 2020, 89, 1329-1339.	1.3	37
141	Female reproductive success and costs in an alpine capital breeder under contrasting environments. Ecoscience, 2002, 9, 427-433.	0.6	36
142	Poor horse traders: large mammals trade survival for reproduction during the process of feralization. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1911-1919.	1.2	35
143	Alpine ibex males grow large horns at no survival cost for most of their lifetime. Oecologia, 2013, 173, 1261-1269.	0.9	35
144	Age-dependent associations between telomere length and environmental conditions in roe deer. Biology Letters, 2017, 13, 20170434.	1.0	35

#	Article	IF	CITATIONS
145	Roe deer Capreolus capreolus home-range sizes estimated from VHF and GPS data. Wildlife Biology, 2008, 14, 101-110.	0.6	34
146	Can ground counts reliably monitor ibex Capra ibex populations. Wildlife Biology, 2008, 14, 489-499.	0.6	34
147	Population density and phenotypic attributes influence the level of nematode parasitism in roe deer. Oecologia, 2011, 167, 635-646.	0.9	34
148	The oak browsing index correlates linearly with roe deer density: a new indicator for deer management?. European Journal of Wildlife Research, 2012, 58, 17-22.	0.7	34
149	Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity. Science, 2022, 376, 1459-1466.	6.0	34
150	Big mothers invest more in daughters - reversed sex allocation in a weakly polygynous mammal. Ecology Letters, 2005, 8, 430-437.	3.0	33
151	Hind Foot Length: An Indicator for Monitoring Roe Deer Populations at a Landscape Scale. Wildlife Society Bulletin, 2006, 34, 351-358.	1.6	33
152	Decline in telomere length with increasing age across nonhuman vertebrates: A metaâ€analysis. Molecular Ecology, 2022, 31, 5917-5932.	2.0	33
153	Selectivity of eurasian lynx Lynx lynx and recreational hunters for age, sex and body condition in roe deer Capreolus capreolus. Wildlife Biology, 2007, 13, 467-474.	0.6	32
154	Reproductive constraints, not environmental conditions, shape the ontogeny of sexâ€specific mass–size allometry in roe deer. Oikos, 2011, 120, 1217-1226.	1.2	32
155	Parturition date for a given female is highly repeatable within five roe deer populations. Biology Letters, 2013, 9, 20120841.	1.0	32
156	Do age-specific survival patterns of wild boar fit current evolutionary theories of senescence?. Evolution; International Journal of Organic Evolution, 2014, 68, 3636-3643.	1.1	32
157	How does increasing mast seeding frequency affect population dynamics of seed consumers? Wild boar as a case study. Ecological Applications, 2020, 30, e02134.	1.8	32
158	Assessing variation in lifeâ€history tactics within a population using mixture regression models: a practical guide for evolutionary ecologists. Biological Reviews, 2017, 92, 754-775.	4.7	31
159	Plastic response by a small cervid to supplemental feeding in winter across a wide environmental gradient. Ecosphere, 2017, 8, e01629.	1.0	31
160	Early and Adult Social Environments Shape Sex-Specific Actuarial Senescence Patterns in a Cooperative Breeder. American Naturalist, 2018, 192, 525-536.	1.0	31
161	Female reproductive senescence across mammals: A high diversity of patterns modulated by life history and mating traits. Mechanisms of Ageing and Development, 2020, 192, 111377.	2.2	31
162	Maternal age is not a predominant determinant of progeny sex ratio variation in ungulates. Oikos, 2002, 98, 334-339.	1.2	30

#	Article	IF	CITATIONS
163	Reproductive biology of captive female Eurasian lynx, Lynx lynx. European Journal of Wildlife Research, 2005, 51, 151-156.	0.7	30
164	No Difference between the Sexes in Fine-Scale Spatial Genetic Structure of Roe Deer. PLoS ONE, 2010, 5, e14436.	1.1	30
165	Roe deer population growth and lynx predation along a gradient of environmental productivity and climate in Norway. Ecoscience, 2010, 17, 166-174.	0.6	30
166	Quantifying the influence of measured and unmeasured individual differences on demography. Journal of Animal Ecology, 2015, 84, 1434-1445.	1.3	30
167	Socially mediated effects of climate change decrease survival of hibernating Alpine marmots. Journal of Animal Ecology, 2016, 85, 761-773.	1.3	30
168	The hidden ageing costs of sperm competition. Ecology Letters, 2020, 23, 1573-1588.	3.0	30
169	Demographic Patterns after an Epizootic of Keratoconjunctivitis in a Chamois Population. Journal of Wildlife Management, 1996, 60, 517.	0.7	29
170	Predation risk and longevity influence variation in fitness of female roe deer (Capreolus capreolus) Tj ETQq0 0 0	rgBT/Ove	rlo <u>င</u> ္နဲ့ 10 Tf 50
171	Maternal condition and offspring sex ratio in polygynous ungulates: a case study of bighorn sheep. Behavioral Ecology, 2005, 16, 274-279.	1.0	29
172	Skewed distributions of lifetime reproductive success: beyond mean and variance. Ecology Letters, 2020, 23, 748-756.	3.0	29
173	Parasite abundance contributes to conditionâ€dependent dispersal in a wild population of large herbivore. Oikos, 2014, 123, 1121-1125.	1.2	28
174	Partial migration or just habitat selection? Seasonal movements of roe deer in an Alpine population. Journal of Mammalogy, 2015, 96, 502-510.	0.6	28
175	MANAGEMENT OF CHAMOIS (RUPICAPRA RUPICAPRA) MOVING BETWEEN A PROTECTED CORE AREA AND A HUNTING AREA. , 2002, 12, 1199-1211.		27
176	Spatio-temporal variation in cat population density in a sub-Antarctic environment. Polar Biology, 2002, 25, 90-95.	0.5	27
177	Fluctuating food resources influence developmental plasticity in wild boar. Biology Letters, 2013, 9, 20130419.	1.0	27
178	Variation in actuarial senescence does not reflect life span variation across mammals. PLoS Biology, 2019, 17, e3000432.	2.6	27
179	No sex differences in adult telomere length across vertebrates: a meta-analysis. Royal Society Open Science, 2020, 7, 200548.	1.1	27
180	Variation in harem size of red deer (Cervus elaphus L.): the effects of adult sex ratio and age-structure. Journal of Zoology, 2004, 264, 77-85.	0.8	26

#	Article	IF	CITATIONS
181	Statistical evaluation of parameters estimating autocorrelation and individual heterogeneity in longitudinal studies. Methods in Ecology and Evolution, 2012, 3, 731-742.	2.2	26
182	Sex-specific senescence in body mass of a monogamous and monomorphic mammal: the case of Alpine marmots. Oecologia, 2013, 172, 427-436.	0.9	26
183	The Influence of Nonrandom Mating on Population Growth. American Naturalist, 2013, 182, 28-41.	1.0	26
184	Longâ€lived and heavier females give birth earlier in roe deer. Ecography, 2014, 37, 241-249.	2.1	26
185	Snow sinking depth and forest canopy drive winter resource selection more than supplemental feeding in an alpine population of roe deer. European Journal of Wildlife Research, 2015, 61, 111-124.	0.7	26
186	Quantifying individual heterogeneity and its influence on lifeâ€history trajectories: different methods for different questions and contexts. Oikos, 2018, 127, 687-704.	1.2	26
187	Flower phenology as a disruptor of the fruiting dynamics in temperate oak species. New Phytologist, 2020, 225, 1181-1192.	3.5	26
188	Continuous cycling of grouped vs. solitary strategy frequencies in a predator–prey model. Theoretical Population Biology, 2004, 65, 263-270.	0.5	25
189	A semiâ€Markov model to assess reliably survival patterns from birth to death in freeâ€ranging populations. Methods in Ecology and Evolution, 2011, 2, 383-389.	2.2	25
190	Elephant damage to trees of wooded savanna in Zakouma National Park, Chad. Journal of Tropical Ecology, 2002, 18, 599-614.	0.5	24
191	Patrons de reproduction des femelles d'isard (Rupicapra pyrenaica pyrenaica) dans une population non chassée et conséquences démographiques. Canadian Journal of Zoology, 2006, 84, 1263-1268.	0.4	23
192	Demography of plains zebras (<i>Equus quagga</i>) under heavy predation. Population Ecology, 2015, 57, 201-214.	0.7	23
193	Introduction to: Individual heterogeneity – the causes and consequences of a fundamental biological process. Oikos, 2018, 127, 643-647.	1.2	23
194	Assessing fitness consequences of migratory tactics requires longâ€term individually based monitoring. Ecology, 2013, 94, 1261-1264.	1.5	22
195	The relationship between phenotypic variation among offspring and mother body mass in wild boar: evidence of coinâ€flipping?. Journal of Animal Ecology, 2013, 82, 937-945.	1.3	22
196	ls a proactive mum a good mum? A mother's coping style influences early fawn survival in roe deer. Behavioral Ecology, 2015, 26, 1395-1403.	1.0	22
197	How do animals optimize the size–number tradeâ€off when aging? Insights from reproductive senescence patterns in marmots. Ecology, 2015, 96, 46-53.	1.5	22
198	Regionalâ€scale models for predicting overwinter survival of juvenile ungulates. Journal of Wildlife Management, 2017, 81, 364-378.	0.7	22

#	Article	IF	Citations
199	Comparing life expectancy of three deer species between captive and wild populations. European Journal of Wildlife Research, 2010, 56, 205-208.	0.7	21
200	The â€~Evo-Demo' Implications of Condition-Dependent Mortality. Trends in Ecology and Evolution, 2017, 32, 909-921.	4.2	21
201	Assessing ageing patterns for comparative analyses of mortality curves: Going beyond the use of maximum longevity. Functional Ecology, 2020, 34, 65-75.	1.7	21
202	Methods for studying causeâ€specific senescence in the wild. Methods in Ecology and Evolution, 2014, 5, 924-933.	2.2	20
203	One size fits all: Eurasian lynx females share a common optimal litter size. Journal of Animal Ecology, 2014, 83, 107-115.	1.3	20
204	Senescence in Mammalian Life History Traits. , 2017, , 126-155.		20
205	Performance of generation time approximations for extinction risk assessments. Journal of Applied Ecology, 2019, 56, 1436-1446.	1.9	20
206	What shapes fitness costs of reproduction in longâ€lived iteroparous species? A case study on the Alpine ibex. Ecology, 2016, 97, 205-214.	1.5	19
207	Sexâ€biased breeding dispersal is predicted by social environment in birds. Ecology and Evolution, 2018, 8, 6483-6491.	0.8	19
208	The influence of earlyâ€ife allocation to antlers on male performance during adulthood: Evidence from contrasted populations of a large herbivore. Journal of Animal Ecology, 2018, 87, 921-932.	1.3	19
209	Cat Dilemma: Too Protected To Escape Trophy Hunting?. PLoS ONE, 2011, 6, e22424.	1.1	19
210	DNA methylation as a tool to explore ageing in wild roe deer populations. Molecular Ecology Resources, 2022, 22, 1002-1015.	2.2	19
211	Effect of observer experience on the monitoring of a mouflon population. Acta Theriologica, 2005, 50, 109-114.	1.1	18
212	Effect of aggressive behaviour on age-structured population dynamics. Ecological Modelling, 2006, 193, 777-786.	1.2	18
213	Habitat Dependence and Correlations between Elasticities of Longâ€∓erm Growth Rates. American Naturalist, 2008, 172, 424-430.	1.0	18
214	Disentangling direct and growthâ€mediated influences on early survival: a mechanistic approach. Journal of Animal Ecology, 2015, 84, 1363-1372.	1.3	18
215	Age-specific survival in the socially monogamous alpine marmot (Marmota marmota): evidence of senescence. Journal of Mammalogy, 2016, 97, 992-1000.	0.6	18
216	Lifeâ€history strategy varies with the strength of competition in a foodâ€limited ungulate population. Ecology Letters, 2020, 23, 811-820.	3.0	17

#	Article	IF	CITATIONS
217	Is degree of sociality associated with reproductive senescence? A comparative analysis across birds and mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190744.	1.8	17
218	Age-Specific Survival in Five Populations of Ungulates: Evidence of Senescence. Ecology, 1999, 80, 2539.	1.5	17
219	Polyandry Has No Detectable Mortality Cost in Female Mammals. PLoS ONE, 2013, 8, e66670.	1.1	16
220	Early and adult social environments have independent effects on individual fitness in a social vertebrate. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151167.	1.2	16
221	Des différences, pourquoi? Transmission, maintenance and effects of phenotypic variance. Journal of Animal Ecology, 2016, 85, 356-370.	1.3	16
222	Thermal conditions predict intraspecific variation in senescence rate in frogs and toads. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
223	What determines global positioning system fix success when monitoring free-ranging mouflon?. European Journal of Wildlife Research, 2009, 55, 603-613.	0.7	15
224	Same habitat types but different use: evidence of context-dependent habitat selection in roe deer across populations. Scientific Reports, 2018, 8, 5102.	1.6	15
225	Linking the population growth rate and the age-at-death distribution. Theoretical Population Biology, 2012, 82, 244-252.	0.5	14
226	Changes of population trends and mortality patterns in response to the reintroduction of large predators: The case study of African ungulates. Acta Oecologica, 2012, 42, 16-29.	0.5	14
227	Paleodemographic analysis of a fossil porcupine (Hystrix refossa Gervais, 1852) population from the Upper Pleistocene site of Geula Cave (Mount Carmel, Israel). Journal of Archaeological Science, 2012, 39, 3027-3038.	1.2	14
228	Estimating individual fitness in the wild using capture–recapture data. Population Ecology, 2018, 60, 101-109.	0.7	14
229	Maternal reproductive senescence shapes the fitness consequences of the parental age difference in ruffed lemurs. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181479.	1.2	14
230	Towards a vertebrate demographic data bank. Journal of Ornithology, 2012, 152, 617-624.	0.5	13
231	Understanding and geo-referencing animal contacts: proximity sensor networks integrated with GPS-based telemetry. Animal Biotelemetry, 2016, 4, .	0.8	13
232	Largeâ€scale variation in birth timing and synchrony of a large herbivore along the latitudinal and altitudinal gradients. Journal of Animal Ecology, 2020, 89, 1906-1917.	1.3	13
233	Estimation of Lifetime Reproductive Success When Reproductive Status Cannot Always Be Assessed. , 2009, , 867-879.		13
234	Growth of European roe deer: patterns and rates. Acta Theriologica, 2000, 45, 87-94.	1.1	13

#	Article	IF	CITATIONS
235	Linking demographic responses and life history tactics from longitudinal data in mammals. Oikos, 2016, 125, 395-404.	1.2	12
236	Neophobia is linked to behavioural and haematological indicators of stress in captive roe deer. Animal Behaviour, 2017, 126, 135-143.	0.8	12
237	Evolutionary Pathways to Communal and Cooperative Breeding in Carnivores. American Naturalist, 2020, 195, 1037-1055.	1.0	12
238	Evolution of large males is associated with femaleâ€skewed adult sex ratios in amniotes. Evolution; International Journal of Organic Evolution, 2021, 75, 1636-1649.	1.1	12
239	Efficient use of harvest data: a sizeâ€classâ€structured integrated population model for exploited populations. Ecography, 2021, 44, 1296-1310.	2.1	12
240	Managing Large Herbivores in Theory and Practice: Is the Game the Same for Browsing and Grazing Species. Ecological Studies, 2008, , 293-307.	0.4	12
241	The ground plot counting method: A valid and reliable assessment tool for quantifying seed production in temperate oak forests?. Forest Ecology and Management, 2018, 430, 143-149.	1.4	11
242	Temporal correlations among demographic parameters are ubiquitous but highly variable across species. Ecology Letters, 2022, 25, 1640-1654.	3.0	11
243	Toward an Identification of Resources Influencing Habitat Use in a Multi-Specific Context. PLoS ONE, 2011, 6, e29048.	1.1	10
244	Studying spatial interactions between sympatric populations of large herbivores: a null model approach. Ecography, 2013, 36, 157-165.	2.1	10
245	A standardized approach to estimate life history tradeoffs in evolutionary ecology. Oikos, 2014, 123, 151-160.	1.2	10
246	Pathogens Shape Sex Differences in Mammalian Aging. Trends in Parasitology, 2020, 36, 668-676.	1.5	10
247	Roaring counts are not suitable for the monitoring of red deerCervus elaphuspopulation abundance. Wildlife Biology, 2013, 19, 94-101.	0.6	9
248	Does tooth wear influence ageing? A comparative study across large herbivores. Experimental Gerontology, 2015, 71, 48-55.	1.2	9
249	Saving time and money by using diurnal vehicle counts to monitor roe deer abundance. Wildlife Biology, 2017, 2017, 1-10.	0.6	9
250	Transparency and open processes in <i>Journal of Animal Ecology</i> . Journal of Animal Ecology, 2018, 87, 1-3.	1.3	9
251	Reproductive senescence and parental effects in an indeterminate grower. Journal of Evolutionary Biology, 2020, 33, 1256-1264.	0.8	9
252	Testing Reliability of Body Size Measurements Using Hind Foot Length in Roe Deer. Journal of Wildlife Management, 2010, 74, 1382-1386.	0.7	8

#	Article	IF	CITATIONS
253	Daily, seasonal, and annual variations in individual home-range overlap of two sympatric species of deer. Canadian Journal of Zoology, 2014, 92, 853-859.	0.4	8
254	Males do not senesce faster in large herbivores with highly seasonal rut. Experimental Gerontology, 2014, 60, 167-172.	1.2	8
255	General conclusion to the special issue Moving forward on individual heterogeneity. Oikos, 2018, 127, 750-756.	1.2	8
256	An individual-based model to assess the spatial and individual heterogeneity of Brucella melitensis transmission in Alpine ibex. Ecological Modelling, 2020, 425, 109009.	1.2	8
257	Variation in the ontogenetic allometry of horn length in bovids along a body mass continuum. Ecology and Evolution, 2020, 10, 4104-4114.	0.8	8
258	Distributions of LRS in varying environments. Ecology Letters, 2021, 24, 1328-1340.	3.0	8
259	How much energetic tradeâ€offs limit selection? Insights from livestock and related laboratory model species. Evolutionary Applications, 2021, 14, 2726-2749.	1.5	8
260	High reproductive effort is associated with decreasing mortality late in life in captive ruffed lemurs. American Journal of Primatology, 2017, 79, e22677.	0.8	7
261	Assessing the Diversity of the Form of Age-Specific Changes in Adult Mortality from Captive Mammalian Populations. Diversity, 2020, 12, 354.	0.7	7
262	How do conditions at birth influence earlyâ€life growth rates in wild boar?. Ecosphere, 2020, 11, e03167.	1.0	7
263	Sexâ€related differences in aging rate are associated with sex chromosome system in amphibians. Evolution; International Journal of Organic Evolution, 2022, 76, 346-356.	1.1	7
264	Early survival of Punjab urial. Canadian Journal of Zoology, 2008, 86, 394-399.	0.4	6
265	Competition for safe real estate, not food, drives densityâ€dependent juvenile survival in a large herbivore. Ecology and Evolution, 2020, 10, 5464-5475.	0.8	6
266	The crustacean Armadillidium vulgare (Latreille, 1804) (Isopoda: Oniscoidea), a new promising model for the study of cellular senescence. Journal of Crustacean Biology, 2020, 40, 194-199.	0.3	6
267	Vertebrate Ageing: An Evolutionary Process with a Genetic Basis?. Current Biology, 2008, 18, R130-R131.	1.8	5
268	On the use of the IUCN status for the management of trophy hunting. Wildlife Research, 2012, 39, 711.	0.7	5
269	Eruption patterns of permanent front teeth as an indicator of performance in roe deer. Ecological Indicators, 2014, 45, 300-307.	2.6	5
270	Reduced microsatellite heterozygosity does not affect natal dispersal in three contrasting roe deer populations. Oecologia, 2015, 177, 631-643.	0.9	5

#	Article	IF	Citations
271	Immune gene variability influences roe deer natal dispersal. Oikos, 2016, 125, 1790-1801.	1.2	5
272	On this side of the fence: Functional responses to linear landscape features shape the home range of large herbivores. Journal of Animal Ecology, 2022, 91, 443-457.	1.3	5
273	Testing Reliability of Body Size Measurements Using Hind Foot Length in Roe Deer. Journal of Wildlife Management, 2010, 74, 1382-1386.	0.7	4
274	FEMALE PROMISCUITY AND MATERNALLY DEPENDENT OFFSPRING GROWTH RATES IN MAMMALS. Evolution; International Journal of Organic Evolution, 2014, 68, 1207-1215.	1.1	4
275	Does grandparental care select for a longer lifespan in non-human mammals?. Biological Journal of the Linnean Society, 0, , .	0.7	4
276	An aging phenotype in the wild. Science, 2019, 365, 1244-1245.	6.0	4
277	Do Equids Live longer than Grazing Bovids?. Journal of Mammalian Evolution, 2020, 27, 809-816.	1.0	4
278	Population responses of roe deer to the recolonization of the French Vercors by wolves. Population Ecology, 2020, 62, 244-257.	0.7	4
279	Grow fast at no cost: no evidence for a mortality cost for fast early-life growth in a hunted wild boar population. Oecologia, 2020, 192, 999-1012.	0.9	4
280	Quantifying fixed individual heterogeneity in demographic parameters: Performance of correlated random effects for Bernoulli variables. Methods in Ecology and Evolution, 2022, 13, 91-104.	2.2	4
281	Comparing profile methods and site-occupancy modelling for the study of occurrence of an elusive species. European Journal of Wildlife Research, 2011, 57, 1115-1118.	0.7	3
282	Wildlife Demography: Population Processes, Analytical Tools and Management Applications. Wildlife Research Monographs, 2016, , 29-54.	0.4	3
283	Like a rolling stone: the dynamic world of animal ecology publishing. Journal of Animal Ecology, 2017, 86, 1-3.	1.3	3
284	Old females rarely mate with old males in roe deer, Capreolus capreolus. Biological Journal of the Linnean Society, 2019, 128, 515-525.	0.7	3
285	And the winner of the inaugural Sidnie Manton Award is…. Journal of Animal Ecology, 2018, 87, 527-529.	1.3	2
286	Can we use a functional trait to construct a generalized model for ungulate populations?. Ecology, 2021, 102, e03289.	1.5	2
287	Demographic determinants of the phenotypic mother–offspring correlation. Ecological Monographs, 2021, 91, e01479.	2.4	2
288	Population density and plant availability interplay to shape browsing intensity by roe deer in a deciduous forest. Forest Ecology and Management, 2022, 515, 120153.	1.4	2

#	Article	IF	CITATIONS
289	Changes in horn size of Stone's sheep over four decades correlate with trophy hunting pressure. , 0, , 150612113525004 .		1
290	A new Editor team. Journal of Animal Ecology, 2020, 89, 4-5.	1.3	1
291	Maternal effects shape offspring physiological condition but do not senesce in a wild mammal. Journal of Evolutionary Biology, 2021, 34, 661-670.	0.8	1
292	Many lifetime growth trajectories for a single mammal. Ecology and Evolution, 2021, 11, 14789-14804.	0.8	1
293	Quantifying the errors in animal contacts recorded by proximity loggers. Journal of Wildlife Management, 2022, 86, .	0.7	1
294	Behavioral Ecology of Siberian and European Roe Deer. Journal of Wildlife Management, 1998, 62, 424.	0.7	0
295	The effects of hurricane Lothar on habitat use of roe deer. FEMS Microbiology Letters, 2004, 195, 237-237.	0.7	0
296	Goodbye and farewell to print. Journal of Animal Ecology, 2019, 88, 4-7.	1.3	0
297	Effects of population density on static allometry between horn length and body mass in mountain ungulates. Oikos, 2021, 130, 2161.	1.2	0
298	A slow life in hell or a fast life in heaven: demographic analyses of contrasting roe deer populations. Journal of Animal Ecology, 2009, , .	1.3	0
299	Senescence in the Wild: Theory and Physiology. , 2019, , .		0
300	Journal journeys: Building on our reputation in animal ecology with new ways to publish. Journal of Animal Ecology, 2021, 90, 2724-2725.	1.3	0